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PREFACE

The text that the present 'Comnentary for Teachers'' accompanies represents
a brave attempt to further the introduction of mbdern mathematics into the
secondary—school curriculum. Except for isolated experiments, the subject of
matrices has not heretofore been taught at the high—school level. The results
of these few;isolated experiment., however, have been 80 rewarding and so success—
" ful that all teaéhers‘sﬁould have courage regarding the exciting possibilities in
this material. Here is some truly modern mathematics that is eminently useful
and that can be understood by all college—capable boys and girls.
The text has been arranged so that individual chapters make separate units.

For the class that has little time for the subject, Chapter 1, which treats the
operations of multiplication and addition, makes a unit. There is much to be
gained even from such a small unit, since in it the students will be introduced
to a.meaningfui example of noncommutative multiplication. It is assumed that
the students have previously heard about the commutative, associate, and dis—
tributive laws. Certainly an understanding of these laws should be a part of
their early training in algebra. But since these students have had little or
no experience with number systems other than those of the real and complex
numbers, they will perhaps not completely comprehend the full significance of
the laws. To demonstrate to the students a new number system in which the
commutative law does not hold is most éorthwhile. Since the ideas of Chapter 1
are simple and there is a great deal of manipulation, largely arithmetical,

the chapter will serve as an easy introduction to the more difficult ideas con—
tained in subsequent chapters.

" The next three chapters are quite independent of each other. Chapter 2 is
the most important froﬁ the mathematician's point of view. In this chapter, a
subset of matrices, the set of 2 X 2 matrices, is considered in detail. Most
pupils who study secondary school mathematics complete their study believing

_that there is just one "algebra." Indeed, they do not know quite what "an
algebra™ is. Through the study of the very neat algebraic system associated
with this subset of the 2 X 2 matrices, the concept of an algebra will be
understood much more clearly. The meaning of the important mathematical notion
of an inverse will also be more thoxoughly comprehended. Best of all, the

Aldgical aspects of the chapter are developed carefully and rigorously. It is

assumed that all students extering the course will already have a considerable

ix



knowledge of axiomatic systems, gained through the study of geometry. In this
chapter, axiomatic methods are applied to algebraic systems. There are many
proofs, and no statements are made unless supported by rigorous demonstration.
Chapter 2 undoubtedly contains more ''mathematics" than Chapter 1.

In many algebra books used in courses commonly called 'advanced algebra;"
reference is made to the use of determinants in the solution of linear equations.
Usually the subject is presented without mentioning matrices. In Chapter 3, it
is clearly seen that determinants are a small portion of a much more extensive
subject. The study of matrices adds greatly to our understanding and facility
in solving systems of linear equations and leads naturally toward more advanced
considerations in collegiate mathematics. '

A shift in point of view is made in Chapter 4. In the study of sciences,
particularly physics, many students are already familiar with the idea of a
vector. In Chapter 4, a vector is introduced as an array of numbers. The
algebra of vectors is developed together with the geometric interpretation.
Chapter 4 is not dependent on either Chapfer 2 or Chapter 3.

Chapter 5 should bte studied only after Chapter 4 has been covered. It
advances rapidly in the study of transformations of the plane. This beautiful
basic application of matrix theory ties together much that the student has learmed
concerning algebra, geometry, trigonometry, and functions, and thus it furnishes
a fitting capstone to his secondary—school study of mathematics.

As an added teaser, however, a delightful set of 'research exercises" has
been appended to point toward more exciting mathematics ahead!

The entire book can be studied in a half—year course for college—capable
students. This means that a large amount of extremely significant mathematics
will be met in a short space of time.

The text is flexible and can be adapted to various types of classes. For a
minimum course of one month, Chapter 1 can be studied. A longer course with a
class of able pupils could consist of Chapter 1 together with Chapter 2, or
Chapter 3, or Chapter 4. Indeed, Chapter 1 together with any combination of
Chapters 2, 3, and 4 constitutes a unit. As indicated above, Chapter 5 should
be studied ‘only in combination with Chapter 4. The four research exercises of
the Appendix are considerably dependent, for their full appreciation, dﬁ the
material in Chapter 2; they are quite independent of Chapters 3, 4, and 5.

A suggested time schedule is the following:

Chapter 1 —~ 2 weeks
Chapter 2 — 4 weeks

X

10



Chapter 3 - 2 weeks
Chapter 4 — 3 weeks
Chapter 5 ~— 3 weeks
Appendix — 4 weeks

A considerable amount of collateral reading is recommended. This reading
has the gurpose of broadening the students' understénding of the nature of
mathematics. It is assumed that the class will already be familiar with many
of the notions of sets; if not, the first assignment of collateral reading should
be in this area. Heve are the titles of some books that, along with those listed
"1n the Bibliography on page 231 of the accompanying text, will be found useful:

I. Adler, 'The New Mathematics," John Day Company, New York, 1958.

E. T. Bell, "Mathematics, Queen and Servant of Science," McGraw-Hill Book
Company, Inc., New York, 1951. S

George A. W. Boehm, 'The New World of Math,' The Dial Press, New York, 1959.

W. W. Sawyer, 'Mathematicians Delight," Penguin Books, Inc., Baltimore,
1957.
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Chapter 1
MATRIX OPERATIQNS

1-1. Introduction

In the Introduction to Chapter 1, the text moves very slowly. If necessary,
you can handle all the material in this first section in one class period. This
is not a wise thing to do, however, and should be avoided if possible. In their ,
experience with mathematics, the students have become much more rigid than the
teacher might like to concede. One of the primary purposes of the book is to
give the students some awareness of the breadth and scope of mathematicc. In
order to prepare.them for the work to come, it is well to spend several days on
the Introduction. If the pupils have already had some experience in developing
a number system, so much the better. If they have not had this experience, it
would be wise to study the system of rational numbers a/b in terms of ordered
pairs (a,b) of integers, with b a counting number. There are two great
advantages to the ordered-pair concept. The first is the traditional value:

The number system is extended logically as the pOStul&tgf;?ecome less restrictive.
The second value is the development of the concept of an ordered pair being a
single entity, in preparation for handling the more advanced concept of an entire
matrix as an entity. )

It is within the capacity of most students who study rigorous mathematics
in the twelfth grade to invent a number system. Once the pupil understands the
relationships between definitions, postulates, and theorems, he can devise his
own number system. To be significant, however, the number system should satisfy
two very important criteria. The first is that the postulates prove fruitful,
that from the set of postulates alone many theorems can be developed. The
second is that the mathematical system, when developed, prove useful in having
interesting applications. If the study of mathematics can be made an adventure,
the students will be eager in their learning. e

A rectangular array of numbers is called a matrix. In this text, we shall
enclose each matrix in a pair of square brackets [ ] . There is no universal
agreement for this convention. Some authors use ( ), and others use { J.

Note that a single number, such as 3, enclosed in square brackets, denotes a
matrix. As the student develops mathematical sophistication, he will understand
that the notions inherent in the symbol 3 and those inherent in the symbol

[3] ' are différent. ‘

Historically, as noted by C. C. MacDuffee in "What Is a Matrix?",

12



2
American Mathematical Monthly, vol. 50 (1943), pp. 360-365, the term matrix

was introduced into mathematics in 1850 by J. J. Sylvester: '"We commence with

an oblong arrangement of terms consisting of m 1lines and n columns. This
will not in itself represent a determinant, but is as it were, a Matrix out

of which we may form systems of determinants by fixing upon a number p, and
selecting p lines and p columns, the squares corresponding to which may be
termed determinanfs of the pth order."

W. R. Hamilton used matrix algebra in © linear and vector
functions. In 1855, Arthur Cayley referr: e 'as being very convenient
notation for the theory of linear equations,' and added the casual comment that
"there are surely many things to be said about this ‘theory of matrices." 1In
1858, he returned to the systematic development of their properties, as here
presented in Chapter 1.

-2=2.. The Order of a Matrix

In this text, we shall speak of the "order" of a matrix. Another frequently
used term is 'dimension." The word "dimension" in many ways is a more natural
term, since we are speaking of two quantities -— the number of rows and the number
of columns, However, it is well to reserve the word ''dimension' for less
technical discussions. The word "order'" will be given a unique mathematical
meaning that will facilitate better communication between instructor and student
once the idea is understood. Thereafter,A;he student can use "dimension' with—
out being involved in technical uses of tﬁe word.

In referring to a square matrix, it is not necessary to designate two
numbers. For instence, in referring toa 2 X 2 square matrix, it is sufficient
to speak of a square matrix of order 2,

Little attention need be paid in this chapter to the concept of a row matrix
or a row vector (see 'The Mathematics Teacher,' January, 1960). The subject of
vectors is explored at length in Chapters 4 and 5. At this time, it is sufficient
merely to introduce the term. It is important, however, to differentiate between
a point having coordinates such as (2, 3) and a row vector [2 3] . Although
there is a geometrical representation of row vectors that involves points, there
are two distinct concepts to be considered. Both concepts are valuable, and an
effort should be made to understand the difference between them. It is worth
noting at this point that a very interesting short course can be given that
would involve Chapter 1, Chapter 4, and possibly Chapter 5.

(pages 3-6)



A 3
1f the class has not had previous experience with subscript notation, a
.considerable number of exercises should be devoted to drill in this terminology
since it will be encountered frequently throughout the book. The two letters
i and j can be considered as variables of which the range must be designated.
The usual range for 1 is {(1,2,...,m}, which means that i takes on each X

value between 1 and m, inclusive. The usual range for Jj 1is {1,2,...,n).

Thus, if m equals 4 and n equals 6, the notation aij is a general
representation for each one of twenty—four entries. Note that it is important
to think of aij as representing each entry separatel,, not . '' "ntries to—

gether. Attention should be focused on one entry at a time, anu in this con~
nection there should not be consideration of all entries at oi2 time in a kind
of amorphous mass.

There are three rather common notatluns for the transpose of a matrix A.
These are AT, At, and A'. Although the last notation may be the most common,
it has not been used in this book since the prime notation does not impress the
consciousness as much as the others. For students in secondary school, it is
safer to use AT or At. Many theorems involving the transpose are developed
later, .in Chapter 2; they have been introduced here for the simple reason that:
they afford convenient material for practice in dealing with matrices and their
elements.

To help the class further to familiarize itself with rows, columns, entriep,
etc., you might have the members engage in a little game involving such a matrix

as

Positive entries represent gains fo. the first player and losses for the second,
while negative eptries represent gains for the second player and losses for the
first.

To play the game, the first player writes the number of a row on his paper,
and the second player writes the number of a column. When the numbers are
announced, the entry at the intersection of the chosen row and column is marked
down as the score for that play of the game. Thus if the choices are R2 and

Cl’ then the score is =1. At the end of 10 plays, the scores are added and

[pages 3-6)
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the first player wins or loses according as the sum is positive or negative;
Simple as such matrix games are, they are representative of the competitive
situations that exist, for example, in business and war. In the late 1920's,
they led the great modern mathematician John von Neumann (1903-1957) to the
founding of a new branch of mathematics, the Theory of Games; see the delightful
book by J. D, Williams, The Compléte Strategyst, McGraw-Hill Book Company, Inc.,

New York, 1954, This theory has had a great impact on economics and other

sclences.

e 1-_—2

1. (a) The students will likely u. .1i¢ in examples from newspapers, magazines,
and books. These might involve the stock market, health statistics,

mileages, agricultural production, armaments, populations, etc.

(b) The order m X n is the number m of horizontal rows, followed by

the number n of vertical columns. For example, the matrix

o 0P
Hh Qo

ir of order 3 X 2,
(c) Alternative methods involve sentences, graphs, etc.
2, (a) For example: [17 62 124] .

(b) Such a vector might be used in organizing games, etc. More extensive
information of a similar sort is employed, for example, in identifying

people by their finger prints.

3. (a) &4 X% S. () 0, 3, -7, 8, 7. (c) 3, 12, =5, —7.
(d) -7. (e) 4. (£) 0.
11 8 -1 o
2 10 -3 3
(& |3 12 =5 7| .
4 14 6 8
5 16 3 7

15
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4, (a) 4 x4, (b) 0, 0,1, 0. (¢) 0, 0,1, 0.

(d) o, (e) For i = j. (£) For i # j.

= O O

8 1 6
(a) 3 5 7.
L& 9 2

(b) (0.6 o.. :

wir
rof=
N
)

6 7 8 9 10
(¢) -1 -1 =1 =1 =-1| .
-1 -1 -1 -1 -1
-1 -1 -1 -1 =1

6. (a) 4. by 12. (c) n°. (d) mn.

1-3. Equalitv of Matrzces

It should be aozeé that no postulates have been assumed for £ie 'equals"
relationship. The emr—valence properties for equality (i.e., the - .i2xive,
symmetric, and trans:tive properties) are inherent in the giver le. aition of
equality ofamatrices. If these properties have been discussed previously, it
can be demonstrated that they are satisfied by the definition of equality of
matrices; otherwise they probably should not be stressed at this time. It is
very likely that postulates involving equality and operations, such as "{f equals
are added to equals, the sums are equal,’ will appear in student proofs involving
matrices. This point —ight be discussed when an opportunity Ari@en naturally
in a classroom discussian, )

Note that [D 0] does not gqual lo] . Under our definition, two

matrices must have === same order if they are to be equal. Since these two

matrices are not o: t=t same order, they cannot be equal,

[pages 6-8)
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Exercises 1—3

1. (a) x

[
l
&
<
[
I
-

(b) x

i}
-

«

i
N

(c) The four equationms,

x =—-1, y =1,

are consistent. The unique solution is x = -1, y =-—1.

2. If matrix A = matrix B, then the ma.crices are of the same order and
their corresponding entries .ie equal:“ Thus aij = bij for all permissible
i, j.* If B=¢C, then also b,, =c,,. Hence a,, =c,. for all permis—
ij ij ij ij

sible i, j, so that A = C by Definition 1-2.

1 4 7
3 6 9]°

Ead

.
—
L

[l o

[
= wunWwiN

(911
.
r_i‘—“—'l
O wunwnE
1
| ot L

l1—.. Addition of Matr:i:es

In this section, .:.= operation of addition is developed slowly and care—
fully.

Stress the fact ths¢ the definition of addition does noi give a rule by
which matrices of differmnt t~ders could be added. Given titx: problem: Find

the sum of the two quanm:iizs

- -1 -1 0

lf é] and [ 3 —l] ,
17

[pages 8-15]
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some students will be tempted to enlarge the second matrix by adding a row and
a column of zeros. It should be stressed that this produces an altogether
different matrix. Under our definition of addition, the sum of the two matrices
given above is undefined.

The commutative law and the associative law for the addition of matrices
should not be belabored at this time. It is quite obvious Ehat the -addition of
matrices does possess these two properties. When multiplicatién is considered,
thgn the commutative property for the addition of matrices can be put in sharp
contrast with the failure of the commutative property for the multiplication of
matrices. .

Although many students will be inclined to pass over the three theorems
at the e;d of this section by dismissing them as ‘obvious,' the proofs involve
a considerable amount of worthwhile algebra, Proois of these theorems will
sharpen the understanding of the relationships between definitions, postulétes,

and theorems. (See Exercises 1l through 14 in this section.)

Exercises 1—4
1. The single matrix equation is equivalent to the six real-number equatioms,

x+3=0, 2y - 8 =~-6,

a+l=-=3, 4x + = 2%,

b—~3=2b+4, 3b = - 21,
or

x =- 3, y =1,

a:—[" X=v—3,

b=—7’ b=—7,

so that the equations are consistent and havr a unique solution. Two of

the equations are redundancies.

Z. (a) 8 +2 =10, (b) 1 +8 =0, (¢) &4 +4 =8,
L4
3 21

0 al
5§ 45 18

[pages 9-15]
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2 3 &4
1 7 1
4. 5-6‘7.
11 11
|8 9 10
[1 0 ©
5. 01 o .
0 0 1

6. (a) No. You cannot add matrices of different orders.
(b) Yes.

(c} Same as first matrix.

[ 4 2 =2
7. -9 9 3| .

| 8 4% 3
[0 0 o
8. o o ol .
0 0 -1
31
9. (a8) A+ B = 6 2 .
5 7
[3 1 4 2 7 3
(b) {A+B)+cCc= |6 2| + 1 0| = {7 21 .
(5 7 -2 -4 3 3
[1 2 6 1 7 3
() A+ @B+cC)= |3 4| + | 4 =21 = |7 2| .
5 6 -2 =3 3 3
-1 3]
(d) A—-B = o 6| .
. 5 5]
(-1 3 4 2 35
(e) (A—B) +Cm= 0 s8] + 1 ol = |1 6 .
| 5 5 -2 =4 31

1 -3
(f) B—A= |0 =6 .
~5 =5

10. (a) The associative law for additfion.

(b) A=B=—(B=-A.

11. The enitry in the i—~th row and j—th column of —(—A) is _(_aij) = aij

by the laws of real numbers. But this is the entry of A in the i~th

[pages 15-17]
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row and j—th column; and if two matrices have equal entries at all cor—

regponding positions, they are equal.

12. Since -0 = 0, every entry of -0 1is equal to the corresponding entry of

0, so that the matrices are equal.

' 13. Since

—_ b = - —
(g5 ¥ 245?77 245 7 Py

fl

the corresponding entries of —(A + B) and (—A) + (—B) are equal, so
that zhe matrices also are equal.

1l4. To prove that At + Bt = (A + B)t, we simply have to show that the entries

in the same row and column are equal. Let

A-+B=2C.
Then
ciJ = aij + le.
Now
t _ T t _
13 %300 Piy T Pypr Gy T Gy
But
t t
= b,, = .
cji aJL + 3 aij + bij
Hence
t t t
= . b
°15 7 %15 T Py
or
ct = at + 8",
But
C=A+B,
so
[page 171
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ct=@a+mF,
and therefore

a +8)° = a® + 8",

1-5. Addition of Matrices (Concluded)

Insofar as only addition and subtraction are involved, the algebra of
-matrices is exactly like the ordinary algebra of numbers. This statement is
underlined in the text. In order to providz a sharp parallel, the introduction
to the subject of groups may begin here. The real numbers, under the operation
of addition, form a group; that is, they satisfy the postulztes of closure,
éssociativity, identity, and inverse. Also this group is an abelian group

since the commutative property holds for it. The set of all 2 X 2 matrices,

AR R E

forms a group under the operation of addition. Also the set of all 3 X 3

such as

matrices forms a group under addition. Through the use of the group concept,
the structure of the mathematics can be spotlighted. In Chapter 2, the group
concept is developed. Mention of the concept and a brief discussion at this

time will serve as an introduction to the later formal consideration.

In order to solve the matrix equation
X +4A4 =38,

we add the additive inverse of A, namely —A, to both sides of the equation.
Once again students will be tempted to say, "Transpose,' or, "Put A on the
other side and change signs.'" Both practices should be avoided, since they
diminish understanding. Because the inverse has been emﬁhasized considerably,
it is doubtful if the student will depend on these mechanical conveniences. It
is important to emphasize and drill the notion of an additive inverse, that is;

a matrix that 'neutralizes' the result of addition:

21
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X+A+(-A) =X, A+ (-A)=0.

1 0 0 1 1 -1
1. X~ [0 1] [1 0] [—1 1]'
2 1 2 0 01 2 1 1 *
2, X= |3 2 3| - |o 1 of = {3 1 3.
4 3 &4 1 00 3 3 4f
3. [xl X, x3] = [—6 2 —3] + [-6 0 2] = [—12 2 —l] .
Cl_ 0 1 -1
4- C2 = - = ‘0 .
c3 -1 2 -3
. r )
X, X -3 4 2 -3
5. = 1 2 = 1 - ’
Lyl y2_ LS ~i 4 0
X, %] Nk —3} . [—3 o [ 5 —7}
Lyl yz- Ll& 0 5 ~1 ~1 1
hence
X, = 5, Xy =~ 7, Yy = 1, Yy = 1.
6. To prove that R
- (A+C) -~ (A+B) =C~B,
note - that

(aij + Cij) - (aij + bij) =v£ij + cij - aij - bij ='c“ —-bij.

7. No. Although both members of the equation are equal to zero matrices, the

orders are not the same,

.22
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'1-6. Multiplication of a Matrix by a Numbar

In many texts, the multiplication of a matrix by a number is called multi-
plication by a scalar. 'Scalar' is a term that was introduced in 1853 and was

associated with quaternions. Fundamentally, the word "scalar' means a quantity

_ that can be represented on a scale, that is, a real number. The word scalar

may well have been introduced to emphasize the two different number systems. In
the theory of vectors, "scalar" is used to denote a magnitude in contrast to a
vector, which has both magnitude and direction.

It is very infportant to note that the product of a matrix and a number is a

matrix-of the same order as the original matrix.

The fundamental prOpertie's of multiplication by a number, or by a ''scalar,'
are stated in Theorem l—4. These properties are worth emphasizing, since they

are important in the definition of an algebra.

Exercises 1-6 .-
2 1 -3 3 0 5 5 -1 0
1. (a) 2A—B-+-C='2{1 0 4] - [6 9 —1] + [7 8 _]
- 6 1 -11
3 -1 8] °

6 —12 - 10 3—- 0+ 2 -9 -20-0
3-24-14 0 — 36 — 16 12 + 4 + 2

= |16 S -29
-35 =52 -18} °

(b) 3A—-4B - 2C= [

1 —21 2 1
() 74-2(B-0) = [g 0 28] ‘2[—?1 g]
w7 -21] _[= 2 10
= 7 0 28 -2 2 0

18 5 -31 .,
9 -2 28"
(d) 3(A— 2B + 3C) = 3A — 6B + 9C
|6 3 -9
3 0 12

NEEEl

18 0 30 + 45 -9 0
36 54 -6 63 72 -9
30 18 9

{pages 19~-23]
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(a)

(b)

(e)

(d)

1
7

X

5 5 5
2A-B+C= |6 1 -11].
3 -1 8
24 24 24
3A - 6B +9C = 33 -6 -39} .
30 18 9
16 16 16
7A - 2(B ~-C) = 18 5 =311 .
. 9 =2 28
24 24 24
3(A - 2B + 3C) = 33 -6 =39 .
30 18 9
+A) = 3(X + (2X + B)) +C,

+ A = 6(X + (2X + B)) + 2C,

X+A =6X+6(2X +B) + 2¢,

X

X

2(X

2X

4X

+A = 6X + 12X + 6B + 2C,

—18X = - A + 6B + 2C,

1
X =15 (o-68-2C),

1 =24 =24 =24
X== |-26 = 3 -33|,

17 149 -70 12
=24 24 24
17 17 17
X = =26 3 33
- 17 17 17)°
=49 -70 12
17 17 17
+B)=3(X+%(X+A)) + C,
3 3
+2B=3X+5X+35A+C,
2
+ 4B = 6X + 3X + 3A + 2C,

-5X = 3A - 4B + 2C,

X =z (=34 + 4B - 20) ,

wf=

[pages 23, 24)
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T

_2 _2 _2

=2 -2 -2 T 5 3

=1 - = |2 L 23
X= S -4 L 29 S 5 .

7 -4

7 20 14 S 4 =

!

5. To prove that x(yA) = (xy)A: Note that, for real numbers, we have
X(yaij)-= xyaij = (xY)aij'

Then apply the definition (Definition 1-2) of matrix equality.

6. To prove that (x + y)A = xA + yA: Note that, for real numbers, we have

(x + y)aij = xaij + yaij.

Then apply the definition (Definition 1-2) of matrix equality.

I3

1-7. Multiplication of Matrices

Many articles and textbooks dealing with matrices describe the operation
of multiplication first. It is more interesting than addition and sets a
_pattern that makes addition seem easy, éven dull. 1In starting addition,
which is a most conventional operation,bthe student is likelyitd be lead to the
easy conclusion that multiplication proceeds in the same simplé manner — namely
that two matrices of the same order are multiplied together element by corres—
ponding elément. That this i8 not 80 must be emphasized from the start. 1In

the text, a 'practical' problem is presented, one involving television tubes,

~~ -gpeakers, 'and models, ' A discussion of the problem will help motivate the

unusual pattern for multiplication.
1f additional motivation is desired at this point, you might tell the class

- about operatious research, a form of scientific work that has grown rapidly

during and since the Second Wérld'War. In it, scientific methods are applied
to the running of businesses, governments, etc., 'in order to hold production
costs to a minimum, to get maximum use from limited resources) etc. An im—

portant tool im operations research is linear programming, a new branch of

mathematics that makes extensive use of matrices.

[pages 24-32]
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Suppose, for instance, that distances in miles from branch automobile

factories ‘Fl, F2, F3 to towns Tl, T2, T3, T4 are given by the entries in '

the following table (matrix) of distances: .

Il T2 T3 T4

Fl 750 200 300 100
F2 400 500 250 500} .
F3 600 800 400 700

The factories produite a total of 1000 identical cars per dayﬁ

Production Table

Facto No. of Cars
ry Produced
F1 250
F2 350
F3 400
Total 1000

and the total daily demand for the cars by the towns is as follows:

Requirement Table

Town No. of
Cars Required
Tl 400
T2 200
T3 300
T4 100
Total 1000

If it costs $1 to ship a car 10 miles, how can the demand be met at minimum

total transportation cost? . 26

[pages 24-32]
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In the mathematical formulation of the foregoing problem, you have a fine
opportunity to drill the class on subscripts and in the use of the 2 notation.
Let x,., denote the number of cars shipped daily from faectory Fi to town T,.

1] 3
Then from the Eroduction table you see that '
X1 + X + xl3‘+ X4 = 250,
Xy + X9 + Xyq + Xyy = 350,
= 400
x31 + x32 + X33 + x34 +00 .
These equations can be written more cornjpactly as
4
Y ox,, = 250,
=1 b
4
T x,. = 350, (1)
(RIS
4
Z x3j = QUOf
j=1
Similarly, from the demand table you must have
)
x,, = 400,
121 il
3
_Z x;, = 200, (2)
i=l
>
X = 300,
121 i3

Now from the table of distances, and from the fact that it costs $1 to ship a

car 10 miles, the total cost is

[pages 24-32]
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+ 30x13 + 10x14,

22 T 25x23 + 50x24,

+ 80x32 + l+Ox33 + 7Ox34.

C = 75x,, + 20x

11 12

+ 40x,, + 50x%

T2l
+ 60x31

The problem is to determine nunnegative integers x subject to the

s
constraints (1) and (2), in such a way as to minimize thijcoat C. This is a
formidable problem for hand computation, but the class may be interested to
know that on an electronic cbmpnting machine the methods of linear programming
would get the answer quite quickly.

Here is a simpler problem of a similar sort that involves matrix multi-—
plication:

A chicken rancher found that certain brands of feed contain the following

amounts of vitamins per measure:

Brand I Brand JI ,Brand III

150 1000 300

Vitamin A
Vitamin B 200 800 300

- Vitamin C | 700 200 200
Vitamin D | 700 800 100 | .

For a feeding of his flock, the total minimum vitamin requirements were known

to be

Faeding

-

Vitamin A | 40,000
Vitamin B | 40,000
Vitamin C | 30,000

" Vitamin D | 40,000

He actually fed the flock in accordance with the following formula showing

measures per feeding:

Feeding

Brand I

Brand 11

Brand 111
[pases
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Why did the chickens fail to develop as they should?
When you multiply the vitamin—per—brand matrix by the brand—per—feeding

matrix that he used, you get the actual vitamin—per—feeding matrix:

150 1000 300 20 45;000
200 800 300 30 v 40,000
700 200 200 40 28,000 :
700 800 100 42,000

When this is compared with the required vitamin-per—feeding matrix, it is found
that the chickens suffered from a slight vitamin C deficiency.
You might now ask the class to adjust the formula in such a way as to get

an adequate feeding. For example, it will be found that the formula

Feeding.-
Brand 1 23
Brand IIX 30

Brand IIX 38

is adequate. You might also ask for a computation of the 1 X 1 cost—per—
feeding matrix for various adequate and inadequate feeding formulas, given

that the cos..—per—brand matrix, measured in cents per measure, is

Brand I Brand Il Brand 111

Cost [10 30 20] .

Other applied problems involving the multiplication of matrices can be
found in the book by Kemeny, Snell, and Thompson listed in the Bibliography on
pagé 231 of the text.

There is another kind of problem that can be presented to aid-understanding,
a problem familiar to students who have studied a considerable amount of trigo-—
nometry and analytic geometry. The notion of a mapping occurs early in a
student's matheﬁatical training. The concept is used in the discussion of a
function. 1In analyﬁic geometry, the idea is extended when a chaﬁge of axes is
discussed. The formulas for translaticn are \

x' = x - h,

y' =y - k.
[pages 24-32]
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The more difficult case of rotation of axes involves the formulas

°
x' = X cos @ +y sin O,
y' = - x 8in @ + y co® Q.
~p%r.ider two meppirz - and B that 1& per--rwmed in =he order: first B,

—ren A. Let us dew~re = mappings as follow

5 x' = cyx + c.y,
y' = dlx + dzy;
A: xﬁ = alx' *'azy',

" o | . ]
y blx b2y .

To obtain the product mzpping AB, we first perform the mapping B and then
the mapping A; this gives ) .

"o .
x al(clx + czy) + az(dlx + dzy),.

y" = bl(élx +c.y) + bz(dlx + dzy),E

P

and then, by rearranging terms,

x" = (alc1 + azdl)x + (alc2 + a2d2)y,'

" o= .
y" = (blc1 + bzdl)x + (blc2 + b2d2)y.

If the two original coefficient matrices are placed in juxtaposition,

the "row by column" nature'of the "product" (AB) coefficients can readily Be,

seen. It can easily be shown also that AB # BA. You might tell your class

that Cayley (1821-1895), the inventor of matrices, proceeded along such a path

.. in his original work on linear transformations in 1858. He was preceded in the

~study of the algebra of rotations in space by Hamilton (1805-1865).

[pages 24~32]
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Once the mecheuwies ¢ multzifiication are introduced, it is important
continually to stregs ti~ w.i2, 'TOw by colimm." Also, it is most helpful to
retain in mind .the y{gsw“._ tigmw

4 a a

t2 %12 "13

- 822 %23

Te 832 fa3
The subscripts identify ..’ ro. . * column to be multiplied together in order
to obtain a particular -~ew:

The " z notation' .- %@ -swefzl that the students shoulczbe given consider—
able practice with it. vt hes. compact notation, the proof of some theorems

becomes very unwieldy.

Through the examples = .« section and through the exercises at the end
of the section, many stuc -ni-s sivgeid develop a suspicion that this multiplication
is quite different from : = m: =Zplication of real numbers. Unless they read
ahead of the assignment, < is dbubtful if they will speak of the noncommutativity
or the divisors of zero. i=r 2 genius Bsuch as Hamilton had to face the problem
for years before he would acamit that éB. ggggﬁggt always equal BA! ‘ihe learn—
ing process can be made morer éxciting +f the secret is not inmediately revealed
to the students and they === a!llowed EB work dut their own discovery.

Only about half of the multiplications in Exercises 1—7—4 and 1-7—6 should

be assigned to the average “lass.

Zxercises i—7

1. (a) 2 x 3. (e) 3 x 2.
(b) 3 x 3. (£) 3 x 3.
(c) 2Xx 2. : (g) 4 x 3.
(d) 4 x 3. (h) 3x 3.

2. (a) [1.1+z.2+3-3 +f+.-41 = [30] X

@ |12 3 41
2 4 6 8
36 9 1‘21 . o
4 8 12 16| 31

[pages 24-33]




(e)

(d)

(e)

The multiplic=tion

(£) [

(b)

(c)

(d)

e)

£)

4, (a)

1
0

2 3 4
2 -1 6

2 X 4 and the

5
0
1

5

2 -2 4]

[4 2] is impossible, since the first mazriys :.3

1 3

second is 2 x 2.

10 -10 201
=5 0 0 0
2 -2 4
o 1 -2
=150 -1 =2
0 2 4
-1
- o] |D
2

)
—
wu
~
—

=1

+ [O 1 2] =1| =
2
12 -6 36

= 2 -1 6.
-2 1 -6

[page 33)
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-6 ~4| °

16
24 .
12

4 12 10 28
1 8 0 227°

50 -50 100
0 0 0 .
10 -10 20

L}

0 =15 =30
= |10 =15 =30 .
0 30 60



1 %2 %3
i
i 7y Y2 Y3
-
'3 % %
(c) i 25, 21:3
le L:: 283
;::1 :2 2t3
(d) 133 %,
‘..'azbl a2b2
2‘(23c1 a3c2
e) [ © 0 0
byy; By, By,
0 0 0
gy [2 1 1]
1 2 2
301 1
(8 4 7 &4
1 2 1
1:3 1 -
-3 -1 -1] |} -8
3¢ (AB)e = [ 8 0 2] g - [14] ’
1 —11{-1 [—e
ABO = 1o 2| 7] T |1
6. (a) -7 0 4
-13 0 7
—19 0 10
(b) |-2 2 1
= 2 -2
= 2 -5
(¢) 2 -2 -3
2 2 3
R
(d) 11 11 18
—~20 I 33
29 TI9 48

[pages 33, 3%}
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(e. -11 1 18"
-20 0 33 .
(£: 1 2z 23 D=1 =3 -3 2 5
4 = Fl|l-— 0 1| = |=-13 2 5| .
7 8 90— 1 2 21 2
(e, 1 2 3 T 11 -5 —= 3
4 5 6li= 0 1| = [-11 -2 9] .
7 & 3~ -1 0 -17 - 15
() |=7 ° -2 2 1 —5 -2 3
-13 3 - = |=2"2 =2 = .41 =2 9
-19 o i -2 2 =5 _1‘-4‘7 -2 15
(1) 30 B 42 3 0 3 =3 —-4
66 FL 95| - [-3 0O 0 0 o
102 126 150 % 0 -2 2 3
€D 30 5 a2tl1 2 3 682 576 684 ]
66 31 9&||4 5 6 1067 1305 1548
102 126 150{|7 8 9 1655 2034 2412
7. If
1 0 0
1= {0 1 of ,
0 0 1

then AI=#4 BI =3B, BT =B", (AI)(I) = AI = 4,

the cos~ger-part matriz = [2 3 5] 1

:he parts—per—=bhassemtfyr matrix =

‘the subassembly-per-mode&l matrix =

[pages 34, 35]
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23

30 33 40
69 81 94
104 128 150

((AT)I)T = A.

N

&

————

3x 2
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7 8 8
and the modz=l-per—xay matrix = {3 4 5 .
35 6)3x3
Then
4-lirp 1 2
the parts—per-moc=: magzix = |3 5 { 4 5]
7 2 3
-
T & 13
= |21 23 31} ,
20 15 24

and the cost—per—dzy matrix

11 8 13||7 8 8
=[235] 21 23 31||3 &4 5
Lo 20 15 24|13 5 6

7 8 8
= [185 150 2.39] 3 4 5
35 6

= [2491 3315 3714] .

1-8. Properties of Matsix Multislication
Now that the definition of wmat=ix multiplication Dias been given, its

properties must be revealed, buz #l.owly.

Although AB # Bs 1in genex:i, there are many illustrations where: AE = BA.
The class can b= put to work diswWwering exsmples. A commest cam. be devised with
a prize to the :student who .rings #n =he Iswrgest number «f illumsrations.

A similar contegr csu: e estghlishef around divisors of zerm. i®ho <an
'bring in the largest-mumizerof il lustrations of AB = 0 when 430 and
B 407 "
' Although som= texts use -the same:natation for the real number- 0 and .’tge
matrix 0, this distinction. should be emphasized, particularly at-ithe beginning,,
~since it’emphastas two systems, the real numbers and the matrices.

Onlly about half:of the multiplications in Exercises 1, 2, and 5 :should be

agsigned to the averame class.

35
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Exercises 1-8

) -1 2 "1 2
1. (a) AB = [_1 4], (b) Be = 1) 2] ,
5 6 (7 1
() (aB)A = [11 14] : @  @e= |l 1‘2’] .
-1 2 N
(e) (BA)B = [ 0 2] ’ (f) B(BA: = l-1 g] ’
-3 10 [
(8)  A(aB) = [_? 22] : ™ (@awE = |7 }‘2’] ,
-1 6
(1) ((aB)A)B = [_3 14] :
2 3 =2 - —6 —=
2. (8) 5 6 —'5 » (b) 6 6 6 >
8 9 -8 -2 0
0 3 6
(c) -6 0 6 , (d) >
-12 -3 6 |
-6 —6 6
(e) 6 6 —6| , (£)
-1 0 1
36 42 - 3§ ~50 ~108 90
() 81 96 -—81| , () s¢ 178 -90| ,
126 150 128 ~3 —12 9
, 3 6 -3
1) |o 6 of.
-3 6 3
. 2 3 =2
3. AL=TA=4A, BI=IB=B, (A)B=4B= |5 6 —5| .
8 9 —8|
2 ]l2 < 3 --6] .
4o (a) (A+B)YA+B)= |] 4]‘{1 4] - [,,6 1s)
2a izt =
0 z'ta z] T lo <«
g2 |1 O]z 0] _ 1 o]
1 2] |1 2 '3 b
ol =]l of 0 —2 0 —4
248 2[0 2][1 2] *Z[z A [4 s] ;
[page 40]
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while the other 3 entries are zero will satisfy this equation; thus, if

0 x 2 00 +x0 Ox+x0 0 0
A= [o o] » them A = [o-o+o-o O-x+0-0] = [0 o] = 0.

Also, among others, A = _: _: satisfies the equation A2 = 0.
(See Execxrcisa 1-9-6.)
0 0 O 2 0 0 O 2 3 0 0 O
8. A= 1 0 0 , AA = A" = 0 0 O , AA” = AT = 0 0 O .
0 1 0 1 0 0 0 0 0

1-9, Properties of Matrix Multiplication (Concluded)

It should be emphasized that examples, no matter how numerous, do not prove

a general law concerning an infinitude of cases. Although the text has many
examples illustrating the associative law, the right-hand distributive law, and
the left~hand distributive law, proofs are still neceséary if we are to state,
"We have proved the law.'" The proofs, which involve the summation or sigma

- notation, are rather diffi;ult and may be beyond some classes. Certainly, the
theorems can be demonstrated on an intuitive basis.

There is no difficulty in presenting the ideas associated with the zero

"matrices,

0 0 0 0 0

0 0 , 0 0 0 ,
0 0 0

and the unit matrices,

1 0 1 0 0

01 , 0 1 0 .
0 0 1

The following question can be presented to the class, "Why isn't the matrix
[0 1
|1 o

a Qnit matrix?"
38 .
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Exercises 1-9

i

0 © -1 0
+ [1 0] = [1 1] = A(B + C).

1. (a) A(B + C)

AB + AC

L} [}
—
| = O
O =
(el
0O ——
|
-
(el
————

(b) (B + C)A

]
|
-
(=2
r———
- O
[
—
]
——
o=
L
—
-

BA + CA

(c) A(B +C)

AB + CA

]
l
S P
|
]
]

(d) A(B +C)

BA + CA

|

|

[‘(1) o + [g (1,] = [‘(1, i] # AGB + C).
[ |

|

1 1
0 _1] # A(B + C).

2. aB= |0 O] #0, BA= [O O] =0.

Ll 0 0 0 =
3. AB = [ ac — bd ad + bc = ac — bd ad + bc
* L-—bc — ad ~bd + ac —(ad + bc) ac—bd}| ?
BA = [ ca—db cb + da - ac — bd ad + bc « AB
L-ad — bc —db + ac —(ad + bc) ac — bd *

1f, for example, a=2, b=3, c=1, d= 4, then

-2x+0+7x=1,
-1l4x + 2 + 4x = 0,

7x - 2x = 1, -
each of which is equivalent to x = 1/5. The other six equations are

[pages 47, 48]
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satisfied for all x, so there is

satisfies all nine equations.

exactly one x,

0 0
A= |0 0 0| =0 =3a.
0 0 0
L J
0 0 01
AC = 0 0 0 = Th
LZ 0 0
0 0 0.1
BC= |0 0 O =0 = <B.
0 0 O
r 3 .
01 Ow 2 0 0 11
A= 0 0 1 , AA =A = 1 0 O ’
1 0 0 LO 1 0
L L J
. 5 1o 0]
AT v A =. |0 1 Of .
0 01
L - .
Other solutions ar2 £ =1 and
0 01
A= |1 0 O .
01 0
i N (—al 2
2 (ab)(ab) =+ (E)(=a") (ab)b

A =
2
| (—a%)(ab) + (b))
azb2 - &.'P.bZ ab3 - ab3
{—asb + a3b ~—.-;2b2 + azb

0

For example, let a =2, b= 3., Then

st—54) _ [0 0
-36 + 36 o of °

-,

O B I B

(a) [(1, _‘1’] : (@) L‘(l,

) [‘1’ "(1,] : @) L_;’

@ [‘1’ (1,] . £ L-(l)
[pages 48, 49)
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+ b2 (—ab)

(~a2) (b%) + (~ab)(~ab)

namely x = 1/5,

29
that



D and E, D and F, and E and F are anticommutative.

fff'."- 2 [ 8 5
(—15 =5
"'SA - i 5 _10] ’ .
(7 o

Adding, we obtain [g g] ; thus A satisfies the equation

A2~ 5a +71=0.

10. (A + B)(A — B) = A + BA — AB — B2,

but in general BA ¥ AB, so the middle terms do not give the zero matrix
when combined.

For example, if

then

we (23], m- [ "é]-

8o that AB ¥ BA, and therefore in this case

(A +B)(A - B) # A% ~ B2,
In fact,

Aa+B)a-3) = | (1’] ,
while

2 2 —~4 4
A B = [_2 _(‘] .

But (see Exercise 1-9-~3) if

41
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2 3 )
A= [_3 2] , B= [_2 1] » then AB = BA,

D so that, in this case,

(A +B)(A—B) = a° - g2

v w
11. Let V= :2 , W= ?2 :
;n én
Then
Vt = [vl Vg eee vn] ’ wt = [wl Wy eee W ],
80 that

t
VW= Y vu =WV,
e TE A

The class will understand this better if you illustrate it for n = 2 and
n= 3,

12, Lét A= [aij] mx p’ B = [bjk]an'

Then

w- | §

b
jap T3Sk '

mXn

entry in position (i,k)
8o that

P
Y a

3=1 1174k :

nXxXm

entry in position (k,1i)

(aAB)

.

[page 50)
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further
t Tt
B° = [by] nxp? A [aij] pxm’
entry in position (k,J) entry in position (1,1)
so that

t .t P l

BA = | 2 b,a .
o Jkid
[11 nxXm

f

entry in position (k,1)

Hence (AB)t = BtAt.
13. Let B = [_bij] ax p* C= [cij] axp: ¢ A= [ajk] oxn®
Then ‘

B+C= [bij +cij] X p’

o ,
(B+C)A= “‘{,1 (bij + cij)ajk]

mXn

[ P
= P (bijajk'*'cijajk:]

mXn

p n
Y b,.a,+ 2 b, .a ]

mXn

b, .a + c,,8 ‘
el % B ) 3 o 11 k
i=1 ! mXn J=1 .j mXn

43
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1-10. Summary

The summary of this chapter recalls the principal results thus far obtained;
it also points toward the developments of Chapter 2 and 3. It recalls some
differences between matrix algebra and elementary algebra; it also points toward
yet ancother difference.

You should dwell wifh the class on the fact that the operations of sub—
traction and division are inverse to the basic operations of addition and
multiplication. _ '

Every matrix A has a negative, or "additive inverse'" =—A; conseovently,
the problem of subtraction is always solvable for matrices that are conformable
for addition. This statement i8 almost too trivial to be understood, and it
should be thoroughly illustrated. Thus, to solve the equation

4] #<= L3

. orx

A+ X=B,

for X, we add the negative of A to each side of the equation, getting

4 - ] e 2] B

1
X = [8] =B -~ A,

Analogous statements cannot be made concerning the problem of division in

whence

matrix algebra. Thus the problem of solving
0 0 .11
HHEEAE
or
AX = B,

for X has no solution X. You'can see this by letting
[pages 50, 51)
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and trying to solve for a, b, ¢, and d. Thus if there were a solution,

Rl - L= e

an impossibility since 0 # 1,

then we would have

45
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Chaptef 2

. THE ALGEBRA OF 2 X 2 MATRICES

2-1l, In tréduc tion

Much more real mathematics is met in this chapter than in the precediﬁg

one. Chapter 1 is largely concerned with manipulation and depends on compu ta—

o tional skill; even the student without much mathematical insight can handle

‘the material very readily. In Chapter 2, more mathematical intuition is needed,

;5 _and the ideas presented are much more subtle. Extensive discussion about -and

H;‘around the ideas is necessary in order to convey to the pupils the true con—
siderations that are involved. Since there are few routine problems in the
exercises at the end of each section in Chapter 2,.on1y one or two of the
exercises should be assigned at a time. It is better that ﬁhe student should
do fewer, but more thought—provoking, problems than that he should do a larger
number that are merely mechanical.

For a class whose mathematical ability is such that the students experience
difficulty with Chapter' 1, it may be best to omit Chapter 2 and proceed directly
to.Chapter 3. O(n the«other hand, it is very,likely that Chapter 2 will prove:
mosit interesting =nd challenging to any class with high mathematical abilims.

Of all subsets of rectangular matrices, probably the most interesting &= the
set of 2 X 2 matrices. There are many mathematicians who feel that the 2 X 2
matrices have inherently enough value in themselves and can be so elegantly
discussed that they alone should be presented in a text designed for secondary
~ schools. The word "elegant" is one reserved by mathematicians for special
gituations. If the proof of a significant theo;em is concisely and cleverly
presented, it is called "elegant." If the exposition of a difficult mathematical
concept is lucidly and originally done, it is said to be "elegant." This
adjective is seldom used, for it confers high distinction. The parts of the
present text that would, relatively, ''rate" this accolade are probably Chapter
2 and the Appendix. .

The trgnsition from Chapter 1 to Chapter 2 is built around the multiplica—
tive inverse. A full discussion of inverses for matrices of arbitrary order is
beyond the scope of the book. The problem can be filly handled, however, if we
confine our attention to the relatively simple subset of 2 X 2 matrices.

The general method of determining the inverse, if it exists, is approached
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slowly. As in Chapter 1, the learning process is made as much an adventure as
- possible. Proceed slowly, demanding that the students wrestle with the ideas
and work out theif own solutions if possible.

The purpose of Epe exarciées in the present section ié to illustrate the
verification (or falsification), in a variety of unusual situations, of the
properties occurring in the definitions of ring and field. If a property is
valid, a reason should be given; if the property does not hold, a counter—

example is called for.

Exercises 2-1

1. (a) The set of integers is closed under addition; that is, any two integers

can be added, and their sum is an integer.
(b) The set of even numbers-is closed undzsr multiplication.
(¢) The set (1} is closed:under multiplication.

(d) The set of positive irrztional numbers is not closed under division.
(For example, ~/E/ AR 1, which is not irraticmal.)

(e) The set of integers is closed under the operation of squaring.

(f) The set of numbers A = (x: x > 3} 1is closed under addition. (This

is read " x such that x 1is greater than or equal to 3.'")

2. (a) False. (e) False.
(b) False. (f) True, commutative.
(c) True, commutative. - ' - (g) True, commutative,

(d). True, commutative.

3. (a)' 18 not commutative. (d) Is not commutative.
(b) 1Is commutative. (e) 1Is not commutative.
(c) 1Is commutative. (f) 1Is commutative.

4, (a) Is not associative. (d) 1Is associative.
(b) 1Is associative. (e) 1Is not associative.
(c) 1Is not associative. (f) 1Is not associative.

[pages 53~56)
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5. (a) 1Is distributive. In arithmetic, multiplication is distributive over
addition. '

.(b) 1Is distributive. For example,
2% (3F4) =2 % 14 = 14,
and
(2% 3) ¥ (2 *4)=33F4 =14,

(¢) 1Is not distributive., For example,
2% (3FL)=2%8 = 16,
while
(2*3)F(2*4) =6%8=15.

The answers are the same for left—hand distribution as they are for
right—hand distribution because the particular operations (¥*) in

(a), (b), and:(c) are commutative.

6. (a) No. (Additive identity and additive inverses are lackinge.)

(b) Yes. The class should check that each of the field properties is
satisfied.

(c) No. (For example, multiplicative inverse of 2 is lacking.)

(d) Yes. Again, the class should check that each of the field properties
‘' is satisfied. '

2—-2, The Ring of 2 X 2 Matrices

There is an important distinction betweén a field and a ring. Every fieldl
is a ring, but the converse statement 18 not true. For classes that have a
strong mathematical background, there are many examples both of fields and of
rings. The set of rationals, the set of reals, and the set of complex nﬁmbers

are all fields under the usual addition and multiplication. Perhaps the best

and simplest examples of rings that are not fields are the ones that occur in
[pages - 56=61]
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the finite number systems. Numbers modulo 4 form a ring, as do all finite

nuriber systems for which the modulus is not a prime. A very simple illustration
of a ring that is not a field is furnished by the infinite set

{+ee, =3, =2, -1, 0, 1, 2, 3,004}

and its properties with respect to addition and multiplication. WNote that in
the general definition of a ring we assume neither the commutativity of multi-
plication, nor the existence of a multiplicative identity element, nor the
existence of a multiplicative inverse.

In determining whether amy set under certain operations fulfilis the
criteria for a ring, it is important to prove carefully that each postulate is
satisfied. With beginners there is a tendency to dismiss any proof with the
word "obvious." This observation is not testimony to their indifference or
casualness, but rather testimony to their lack of appreciation of the subtleties
of the proof. In the particular case of 2 X 2 matrices, the inexperienced
student is apt to dismiss the step-by—step demonstration that the postulates
are satisfied, since he feels'thétm%he subget must satisfy thelsame criteria as
the superset itself. There are many examples that can upset any such notion.

_ Through their previous experience with mathematics, most students are quite
aware that a counterexample can prove’thht certain propositions are not valid.
This time, it is important to know that a thousand examples are no proof of the
validity of any general proposition. A general proof that covers all cases is
necessary. In order to prove the propositions in the exercises, it might be
desirable to hold the students to a certain pattern so that they will systemati—
cally cover each postulate. In order to prove that a certain set under specific
operations is not a ring, it is sufficient to exhibit, in the set, an example
for which at least one postulate fails to hold.

At all times, however, you should avoid overwhelming the class with details,
such as memorizing the definition of a ring, so that the students will not lose
sight of the larger objectives of the chapter. From time to time the classwork

should be interrupted in order to review these latter goals.

Exercises 2—2

1. The set of integers is closed, commutative, and associative under additlon,

" and there are identity and inverse elemeats for additioh; further, the

[pages 57-61]
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set is closed and associative under-multiplication, and multiplication
distributes over .addition in both directions. Hence, the set of imtegers
under addition ami.multiplication is a ring.

2. (a) 18 a ring.

(b) 1Is not a ring. (For example, + 1 48 not in the set.)

1
1 1 )
(c) 1Is not a ring. (For example, FX3 is not in the set.)
3. 1Is a ring.

4. 1Is not a ring. For example,

sl - el- s

80 that the set is not closed under addition.

2—-3. The Uniqueness of the yultiplicative Inverse

At the secondary-school level, the problem of the multiplicative inverse is
*ordinarily discussed as the problem of divisfon. Indest, continual reference is
made to the four operations of addition, subtraction, multiplication, .and.division
as 1f they were on an equal footing. As a result, studemts do not have:a. clear
understanding of the operations. Subfraction and division should not be:iintro—
duced as independent operations, but rather as the inverses of addition:and multi-
plication, respectively. This idea is havimg a considerable amount of influence
on the newer ninth— and tenth—grade texts, where less emphasis is being placed
on the operations of subtraction and division as such, and more on the role of
the additive inverse and the multiplicative inverse. At the moment, howewer, we
are dealing principally with students who have a concept of:four operatioms. In
order to clarify the relationship between multiplication and division, much time
should be spent on the subtleties of the multiplicative inverse. Since the
exercises in the preceding section serve as an introduction, each of these exer—
cises should be reviewed. The general discussion of multiplicative inverses
should begin with the real number system. The first example should involve the
integers under multiplication. The integers, except + 1, do not have integers
as multiplicative inverses. For example, for the integer 2 there is no integer

%X such that 2x = 1.

[pages 61, 62]
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The number 1 is the identity element fer multiplication in the real
number system. The identity element for multiplication in the set of 2 X 2

ERE

the symbol for which is I. Given a matrix

matrices is the matrix

we call the matrixd

the inverse of A 1if

AB = I = BA.

The question of uniqueness seldom arises in the traditional secondary-—
school mathematics course. This is a regrettable omission. Before any degree
of -mathematical maturity can be achieved, it is necessary to understand that

existence and uniqueness are two distinct notions. Unfortunately,-there are

few opportunities to introduce the subject in the ordinary secondary-school
curriculum. Before introducing Theorem 2-2, it is important to stress the
significance of '"uniqueness." Perhaps this simple example will help the class
to understand tﬁe point: There exists & positive integer less than 3, but not
a unique one; there exists a positive integer less than 2, and it is unique;

there does not exist any positive integer less than 1.

Exercises 2-3

S HH RN N

and thus there are no values a, b, ¢, d that yield I, since 0 # 1.

51
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a bill 0 a+b 0
(b) [c d“l o] = [c+d o] L
since 0 # 1.
a b||l 1 a + b
(e) “:c dHl 1] 8 [c +d] L
since a + b would have to be both 1 and 0 for equality to hold.

‘ b 0 0 -3b 0 .
(@) [2 d][_3 0] = [_3d 0] 1,

gince 0 # 1.

+ +

b
d

(eI -]

2. (a) An inverse pair, since

1L o1 of _ |1
0 11|01 0
(b) An inverge pair, since
1 =13 1| _ 1 O
Ealla)- 6
13 -1y |1 -1 _ |1 0
2 —-1l]2 -3 1o 1) °

(c) Not an inverse pair.

= O
el
.

(d) Not an inverse pair.

(e) An inverse pair if ad — bec = 1;

not an inverse pair if ad — bc # 1.

3. Let

1 -2 2 2
A= [_3 6] and B = [1 1] .

Then AB = 0. If ‘A had an inverse A’l, then we would have

1o o a71(aB) = (47'4)B = 1B = B,

9=4
so that B = 0, which is not so. Hence, A does not have an inverse. A

similar ‘argument proves that B does not have an inverse.

52
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2
[a b] [a b] ] a + bc 0
c —a c -a 0 a2 + be

Hence, if a2 + bc = 0, then

2
[a b] = 0.
c -—a -

The argument of Exercise 3 may now be used to prove that if a2 4+ bc =0

2 <]

has no inverse. If it did have an inverse M, we could use M as a left

then

multiplier to obtain

which has no inverse,

Same argument as that for Exercise 3. Suppose A has an inverse, A—l.

Then

o = al(aB) = (a71a)B = 1B = B.

L 0=aA

Therefore we would have B = 0, contradicting the hypothesis that B #0.
The matrix B can have an inverse only if A =0, since if B has an

inversé B_l then
-1 -1 -1
0 = 0B = (AB)B = A(BB ") = AI = A,

For example, if A =0 and B = I, then the conditions are satisfied and

B has an inverse.

A2 — 4A = A(A — 4I) = 0, by hypothesis. If A has an inverse; A—l, then
upon multiplying the members of the equation on the left by A—l, we get
A—-4X =0, or A =4I, one of the possibilities. The other possibility

53
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7. If AB= 1= CA, then B=IB = (CA)B = C(AB) = CI = C.

S O R P R R

9—1353=10=53—13=I
‘ 2 =512 1 01 2 1 2 =5 ’
- 3]%_ [ 7 -8
2 =5 =12 3|
5 3 2 - |31 18
2 1 12 71”7
7 -18|{31 18 _ |1 o 31 18 7 8|
-12 31|{12 7 01 12 7] 1-12 31 :
8o the squares are inverses.
More generally, #f AB = I, then
2 2
(A")(B”) = A(AB)B = AIB = AB = I.
Similarly if BA = I, then B2A2 = I. Thus we have shown that if A and
2
B are inverses of one another, then so are A2 and B~.
As for transposes, by Exercise 1-9—11 we have
1=1%= (aB)" = B%A%; also, 1=1%= (BA)® = AR,
For the particular example in the text, we have
AL [ 2] 4 pte |5 2
. 3 —SJ an 3 1 ]
whence matrix multiplication gives
At o (-1 21]s 2} . [y o] .,
| 3 513 1 LO_ 1} .
and
et [5 2] [-1 2] (1 0]
BA = s 1][3 -s| " {o 1] =T
-l O0]|-1 O 1 0| -
10. (=) [o —1][ 0 —1] [o 1] ’

80
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80 by (a) we have
0 -~ 4 -1
1 0 :

R R L]

11. If © =120°, then cos 8 = —1/2 and sin @ = ¥3/2, so

/
_1 3 _1 _ 3 1 o
2 2 2 2 2 3
B = A1l Bl ’B‘o .
-7 ~3 7 T3 1

The result can also be obtained trigonometrically from the expressions

2 _ cos 6 sin © cos @ sin €
T~ |—-5sin ©® cos 6| |— sin 8 cos ©

cosze - sinze 2> sin @ cos 9_
2 8in © cos © cos26 — sinZe

sin 20 cos 20

sin 20 cos 20| |- sin @ cos 6

- -
_ [_ cos 20 sin 29]’
-

cos 20 sin 29] [ cos © sin e]

[pages 69, 70]
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- cos 20 cos 6 — sin 20 sin O cogs 20 s8in © + sin 20 cos O
~ 8in 20 cos8 © — cos 20 8in @ — sin 20 sin © + cos 20 cos 8

cos 30 sin 30
~8in 30 cos 30}’

and the values cos 240° = — 1/2, sin 240° = — /3/2, cos 360° = 1,
sin 360° = 0. ‘ ,

3 4 2[5 -8
2 5 ~8 -6 8 1 0 0 0
eomere 23] (28 1] - 9.
The transpose of A also satisfles the equation, since
WH% - 2" + 1= (a2 -2+t =0 =0,
2
13. PA +qA=—rI’
~R % 4.,
r r

80

A(—%A—%I) 1,

and

—- -9
( %A rI)A 1.

2 2
1. 2 = [p q] - [P +ar pa+as
r s pr + rs qr + 82

whence

X2 ~(p +8)X + (ps —qr)I

2 2
[p +qr pq+q8] + [~p - ps -pq—qS]
-

pr + r8s qr + 52 r—r8 -ps-—38

[pages 70, 71]
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+ | P8 —ar 0o -y _ |0 O
0 ps — qr 0o 0] -

Using the technique of 13, if ps — qr ¢ 0, we obtain

—X (p+8)I| _ .
X[pﬂ*qr+ps-qr L

{ - +(L+sl1] _—
ps — qr  ps — qr

so that -

glo_X  ,(+s)l
PS —qr  ps8 — qr

Thus if ps — qr ¢ 0, then X1 exists.

If ps —qr = 0, then
2
x —(p +8)X=0,
or

x[x -+ 1] =0.

Hence, if X—l exists then left—hand multiplication by X_l yields

X—(p +8)1= 0, or

But by hypothesis,

Equating entries, we obtain 0 = q = r. Also, as p + s = p and
p+s=3, we have p =8 =0, But then X =0 and we know 0 does

not have an inverse. Hence the assumption that X”l

exists leads to a
contradiction, so that if ps — qr = 0 then X—_l does not exist., In
other words, if X—l exists, then ps — qr # 0.

[pages 70, 71]
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15. 1f X2 = 0, then, by Exercise 14,

—(p + 8)X + (ps — qr)1 = 0,
or
(p +8)X = (ps — qr)I.

It follows that if p + s =0 then ps —qr = 0 and we are through. 1If
we should have p + s # 0, then from

(p +s)p (p+5)q] - [ps—qr 0 ]
(p+s)r (p+s)s ' i

we would obtain gq = r = 0, whence
(p+s)p=ps=(p+s)s,

or p=s =0, a contradiction of p + s # 0.

2—4. The Inverse of a Matrix of Order Two
This section can be considered the kernel of Chapter 2. Do not rush through

the earlier part of the chapter, however, since the discovery process would then
be left uncultivated and much valuable mathematics would be slighted.

The method that 1s used in obtaining a general expression for the inverse
of a nonsingular (ad — bc # 0) 2 X 2 matrix is quite simple. As far as under—
standing goes, the most difficult paragraph is perhaps the three—line one on
pages T3 and Tk of the text.

Note that in the development of a general formula for the inverse, our work

first involves the right-—hand inverse; namely, given a matrix

we find 5 8

[pages 71-75]
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{P q} such that {a b] [p ql = 1.
r s ¢ d r s

In order to satisfy our definition, namely that B 1is the inverse of A
if

AB = I = BA,

we must then demonstrate that the right-hand inverse is also the left-hand inverse.
Aftér this has been demonstrated, it is possible to state the results as a

theorem. It is again important to emphasize that the converse of any partiéular
theorem does not necessafily follow from the theorem itsélf; in fact, the con~
verse might not even Be valid. There are many familiar examples, particularly

in geometry, that can be used to clarify this point.

Exercises 2—4

1. (a) [(1) “i] )

(b) Inverse does not exist, since h = ad — bec = 0.

2 _ 7
h h
(c) _.2 _ 2 , where h = 126..
% -
7 -
(d) 1 .
- 2
- 2
-1l
(e) 2
3 1f°
| 8 %
1 a
2 14
(£) NE
© -3

(g) Inverse does not exist, since h =ad —be =6 —6 =0,

2. We have already established that 2 2 X 2 matrix has no inverse if and
only if h = ad — bec = 0. We now find the values of x for which h = 0;
[pages 71-76)
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(a) x> -
(b) x> =0, x=0.

(¢) (x+2)(x-1) =0,
(d) 3% - 2(x - 1) = 0,

3% = 2x +2 =0,

x = 1 (since

k9

x € R).

x € (-2, 1}.

Discriminant is negative; hence there is no real solution and an

inverse exists for all x € R.

@) [ cos & sin e] -1 1 [cos ® —sin e]
—~sin 6 cos © ‘:0829 + sin29 sin © cos ©
cos 8 -—sin ©
sin © «cos 0}
sin C0829 + sinze_ = 1.
(b) cos © sin © cos @ sin
—sin @ cos O —=sin 0@ cos @
cog © cos @ — sin O sin @ cos © sin @ + sin © cos
—sin © cos @ —- cos B sin @ —sin O sin @ 4 cos © cos Q
cos (O + ©) sin (@ + ©)
—sin (@ + 6) cos (@ +0)}| °
Suppose A has an inverse, say B. Then
AB = BA =1,
so that
@) = (Ba)" = 1° = 1,
or
BEAE = A%F = 1.
Hence At has Bt as its inverse.

[pagem'lruéq"] :
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Conversely, suppose At has an inverse, say Bt. Then

A%t = 8%t =1,

so that

@BHE = @5%5H =15 =1,
or

@EH5HE = aHEHE - 1,
or

BA = AB = I.

Hence A also has an inverse, namely, B.
We have shown, above, that if A has an inverse B, then
'A% = A%" = 1.

Hence, as B = A—l, we have

-1 —_
WHaE = At = 1
But this says that the transpose of A—1 is the inverse of At since the

product in both directions is I.
-

-1 d _b
a b h h N B
3. [c d} = _c al’ h =ad - bc # 0.
h h
Since
d)(a b\ (=) _ ad-be _ h _ 1
(F> (ﬁ) ( h) ( h/ 2 = 3 mHW.* 0,

h h

A 1 has an inverse given by

. 61
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e d _p|™ |an pn
a b - h h _ h h _ |a b
[cdl c a "&Eiﬁ"[cd]'
“h h h h

6. If A€M has an inverse, say A—l, then the solution of AX =B, for
B € M, may be indicated as follows:

AX = B,
2 axy = a1,
or
X =Alg,
-1 4 _ 3
{23 _ |1 11
(a) __.1 4 = __l_ -—2—
. 11 11
4 3 & _ 3
T "It % 3|* _ |1 Tl °
1 2 =11 2 ’
i1 i1 -1 4 z i1 11 10
o N
= |11 -85 -2
. 22 > or x—ll, 11 .
{ i1
1 1
-1 -
31 _ 15 5
(b) [_2 1] = _2- _:é. H
5 5
1 1 1
I 2|5 ~s|° . |”s
2 3 3|
z 5 5|t 3
or XK=-—%, z=23
S 62
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4 3
4 _ 3 0
© A bl v | Al I
w L 2 \lo 0 ’
T 11 A
so y=w=20,
. 1
PO A I - 6 I ol B
@, 2 3|, Ak
R 5

80 y=l/5) w=2/5,

Parts (c) and (d) should be compargd with parts (a) and (b), respec—
tively. Since the matrices of coefficients are equal, the inverses do not

have to be recomputed.

2-5, The Determinant Function

Many teachers have had experience with determinants in finding the solution
of a system of linear equations. Seldom has it been pointed out to them that
the determinant value is in a functional relationship with the coefficients of
the variables. Although much time is spent in this section in developing theorems:
involving the déterminant, the single most important idea is the assignment, or

mapring,
83(X) : xX—>x for XeM and x € R,

Although this text does not dwell on determinants of matrices of higher

order, any class that has had experience with determinants in advanced algebra
can be shown the functional relationship that exists, through the determinant
function, between 3 x 3 arrays of real coefficients on the one hand and the

real numbers on the other.

It is important to recall the definition of a function. If with each
element of 2 set A there is assoclated in some way exactly one element of a
given set B, then this association constitutes a function from A to .B. The

esgential point here is that a function pairs one and only one element of B
[pages 76-83)

with each element of A, The symbolism
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8 : X —> 5(X)

is only suggestive, since nothing is said about the nature of the association.

This association is defined by the open sentence: If

then
S(X) = ad ~+bc.

In order to specify any function completely, it is necessary to designate

the domain of the independent variable and the range of tlie dependent variable.
The domain of the determinant function is the complete set of 2 X 2 matrices.
The range is the set of all real pumbers. With each member A of the set of

2 X 2 matrices, there is associated a unique real number r = ad — be. It is

important to notice that this mapping gives a unique image, since this is an
important criterion of a function. Since all images under the mapping are real
numbers, we can perform all the usual operations on them. Through these
operations many interesting properties of the determinant function can be

demonstrated.

Exerciges 2-5

1. (a) B(A) =8 [; 2] = 3,
8(3):8[2 1] = 2,
4 3

5(AB) = 5 [22 lg] = 120 ~ 110 = 10 = (5)(2) = &8(a) 5(B).

r 2
(b) 8(a) =8| © 1] =t 41,

5(B) = & |2 1] a-1,

(1 0
. . 2
5(aB) = & tl;_f ]= ~1 =62 = (¢ 4 1)) = 5a) 8(B).

[pages 77-83)
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(c) B(A) =5

4x
4x

—_

4] = 7x,
2

B(AB) = B 4

} =0 = (0)(7x) = B(A) 5(B).

=%
5(B) = 5[
|

a bj. - |ta ¢tb
2. Let A= [C d]’ then tA [tc td]’

5(tA) = (ta)(td) — (eb)(tec) = tZ(ad — be) = t26(A).

3. 5(A—t1)=5[a:td_b_t]?(a—t)(d—t)—bc
= tz—t(a+d)t+ad—bc,
where '
ad — bc = constant term = 5(A).
4, 5(A)=5["2 1] S ———
: x -1
5(BAB 1) = 5 <[_§ -i] [xz 1] {_g _§]>
x -1

. x+x> 1| ]-2 =
Sx-2x> -3] |5 2

5 4x—2x2+5—2x— x2+2.
10x + 4x> — 15 5% + 2% — 6

(=2x% — 4x + 5)(2%% + 5% — 6) — (=x> — 2x + 2)(4x° + 10x — 15)

(—4x® = 183 + 2x2 + 49x — 30) — (=4x" — 18x° + 3x° + 50% — 30)

2
= —-x - X.

5. By Theorems 26 and 27, &(BAB 1) = 6(B) 5(AB ) = 5(B) 5(A) 5(8 1)

= 5(B) 5(A) _5_(1T) = 5(A).
65
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a b t a ¢
6. Let A= [C d] H then A = [b d] ,

5(A) = ad — bc, 5(A%) = ad ~ cb = 5(A), 5(aA") = 8(a) 5(AS)
= (ad — bc)2 > 0.
7. (a) b [lAg t 4 E t] = (1 - t)(4—t); zeros are 1, &.

-l -t 0

s () o t 0 1- tJ = (<1 = t)(L - t); zeros are -1, 1.
(c) B L_g 1 3 t] = 0; zero for all ¢,
d 5.a't O ==ty ~ty; b
(d) o b— ¢ a - ty( ; 2zeros are a, b.
t 2 02 -1 4 =2
8. ar" = [—1 1] [o 1] = ['-2 2]'
S(AAt -xI) =% [4 :zx 2 :?x] = (4 -xQ2-x)~-4= x2 — 6x + 4;

el ] - ]

t 5~-x -1
5(A"A xI)=6[ 3 l—xJ

G-x1-%x)-1

32 - 6x + 4

5(aa® - x1).

In general, a computation gives

i

2 5(A%A - x1).

S(AAt ~xI) = x2 -~ x(a + b2 + c2 + d2) + (ad — bc)2

[}

2~6. The Group of Invertible Matrices

Iﬁ this particular section, the mathematical concept of a group is introduced
in a natural way. So far in this chapter, most of the discussion has centered
around the operation of multiplication and the existence of an inverse. There
should be no break now in the §ibject matter, nor should there be any abrupt
digression in the point of view. The group concept evolves as a notion that

“binds the new ideas together. The more general definition of a group%Fmbraces

the particular one that is stated first in terms of matrices. It will be an
[pages 84~52)
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easy step later to proceed from the more specific to the general.

. The {llustrations and exercises are easily handled in terms of the specific
definition of a group of matrices. Before introduéing the general definition of
a group, it would be well to give a considerable amount of collateral reading
in order that the students will have some indication of the power and scbpg of
the group concept.

Although the text gives several illustrations of both finite and infinite

'groups, there are a great many more that can readily be found and used for
class illustrati~n. If the students have had experience with the concept of
congruence, they will find that this notion yields many simple examples. For °
instance, ’

{1, 2, 4} mod 7,
{1, 3, 9) mod 13,
{1,3,5,7} mod 8,

and

are groups under the operation of multiplication.

The exercises at the end of this section depend more on mathematical insight
than those at the end of many other sections in the book, particularly those that
have occurred up to this point. The exercises in the present section do not
require much computational skill. If the class is not abléfto handle the

exercises independently, do not despair!

Exercises 2—6

1. (a) A No; not closed under multiplication.

(b) Yes; all four properties can be read off from this multiplication
table: '

I -I K X

U
t
H
*
~

2. The result follows quickly from the observation that I 1is a member of the
[pages 85-92]
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set, that the associativity law holds generally for 2 X 2 matrices, and
that if

a 0} b 0
are elements of the set, then

el 4] o |

pl= O

o P

3 Y c d - ac + bd ad + bc
* alid ¢ ad +bc  ac +bd}|?

and 5(AB) = 5(A) 5(B) = (1)(1) = 1; thus if A and B are of the pre—

scribed form, then so is 4B, and accordingly the set is closed under
multiplication. The associativity law holds as in Exercise 2, and I 1is

an element ¢of the set. Finally,

ab_1= a -b| .
b a : - al’

since h = a2 - b2 = 1, so that the inverse of any element of the set is

a member of the set. Hence the set is a group.

2

L L 3
2 _ 2 2 _ 2 2
R T S W B I S U
2 2 2 2
3_[1 0] _ .
R [

The group properties all follow from the multiplication table:

X 1 A a2
1 1 Ao A
A A% 1
A2 a2 1 a ,
Note that A * = A2, (Az)—l = A.
[page 92]
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{
[
-
hﬂﬁh
——”

1 V3
- o
5. Tl a1, T-DTLe - (TITY =-1, K =1,
e | 1 -2 7l |- =2 K= |01
-1 1]' -1 ~-11° 1 0}
-2 1 ) 1 3 S R B R
I SO R P S

The multiplication table yields the four group properties:

X TIT =1 T(-I)T L =—-1 TKT - T(~K)T L
1 1 -1 KT T(—=R)T -
-1 -1 1 T(=K)T L TKT -
KT TKT - T(=K)T 1 -1
-] -1 -1
T(=K)T T(=K)T TKT -1 I

There 18 no restriction on T other than that T~l exists. Hence, the

table shows that we have a group provided T i1s invertible.

o [s)fs e - e, 69
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and (ac)(bd) = (ab)(cd) = (1)(1) = 1; hence the product is of the desired
form.

If ab=1, then a# 0, b# 0, and therefore 1/a and 1/b

exist. Hence

—
oW
oo
| SN

{
=
1l
O Pl
o~ ©

(DG

so that the inverse is of the desired form.

The identity matrix I = [3 2] is a member, and the associative

law holds as usual.

The graph of ((a,b): ab = 1} 1is a hyperdola:

b
A
b
(1,1)
>8
("1)"1)
7. Let
A= al + bK = [: 2] € H,
Bacl+dKm= [Z :] € H,
(a) See Exercise 3, 70
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-1 x _X
x y] .| B Th I R
(v) [y x] y x provided h = x y - #0.
h h
e (c) See Exercise 3.
8. (a) Let
6t = (a%: A e}, atect, B%ect.
Then
Lot t
A = (BA) .
Since BA € G, it follows that (BA)t € Gt, 8o that Gt is closed under
multiplication;

As we are dealing with 2 X 2 matrices, associativity holds.

Gt has an identity element for multiplication, since

I1=1ta [é 2] c 6t.

We have already proved that (Atf~1 = (A—l)t. (See Exercise 2—4—4.)
Since AL e g, it follows that (A )%= aH ™ e ct.

Hence Gt is a group.

(b) Let G' = (BAB ': A€G, BeM with B fixed and invertible),

c' = BB L e @', D' =BDB L cGi.

Then
C'D' = (BCB })(BDB L) = Bc(n"ln)nﬂ"l = B(CD)B L.

Since CD ¢ G, it follows that B(CD)E X € G'. Hence, C'D' € G' and
closure is established.

Since we are dealing with 2 X 2 matrices, associativity holds.

Since I' = BIE © = BB} m I, it follows that I' = I € G', and G
has an identity element for multiplication.

71
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Let C' € G' and consider

1 ~1

et = (e 1)1 o pelp7L,

Since C € G, it foliows that

clee and Bc 13l c g,

But

c'(c)? = 8cE Yy (ac L) = BC(B 1B)G LB L = B(CC )BE L = BB ' m I = T,

~1

Similarly, (C') " cC' = I.

Hence G' is a group.

(a) Let B € G. Then B_l € G, since G 1is & group. Accordingly,
-1
Be (A : Acq),
namely, B is the member obtained by setting A = B—l. Conversely, let

B e [A—]': A € G).

Then B = A_l for some A € G. But then A—l

and therefore B = A~1 € G.

(b) Let C € G. Then B—1 C € G, and accordingly

€ G since G 1s a group,

C e (BA: A € G),

namely, C 1is the member olLtained by setting A = B-l C. Conversely, let

Ce (BA: A€ G},

Then C = BA for some A € G. But also B ¢ G. Therefore, C = BA € G

since G 1is a group.

(a) The set of odd integers does not form a group under addition, since

it is not closed under this operation. For example, 3 + 5= 8, and 8

(page 94)
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is not odd.
" (b) The set R+ of positive real numbers does form a group under multipli-
cation.
Lo+ + +

If a€eR, beR, then ab e R, so we have closure under multi—

plication.
+ + +

If aeR, beR, c€eR, then (ab)c = a(bc), and we have

associativity under multiplication.

le R+, so there is a multiplicative identity.

1f a € R+, then %e R+ and (a) (%) = (-%) (a) = 1. Hence,
each number of R+ has a multiplicative inverse. :

(¢) A= {1, -1, i, ~i}) is a group under multiplication. We shall examine
the multiplication table:

-4 |- i 1 -1

The body of the table contains only members of the original set A,
and so A 1is closed under multiplication.

Complex numbers are associative under multiplication. We could also
verify this by checking ali possible products of three factors: (ab)c =
a(be).

The element 1 serves as an identity element.

Each element of A has an inverse element in A, as can be found

from the table. Thus

1l o,
-7t =-1,
W=,
)= 1.

(d) Let T = (3m: m is an integer}. Let a, b, and c be arbitrary
integers, so that 3a, 3b, and 3¢ are arbitrary members of T. Then

(page 94}
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3a + 3b = 3(a + b),

(3a + 3b) + (3c) = (3a) + (3b + 3c),

- so that the closure and associativity properties hold.
We have 3a + 0 = 3a, for 3a e T; and (3)(0) = 0 € T. Hence
ewo. there is. an additive inverse in T. , ' o
We have 3a + (-3a) = 0, and —3a = 3(-a) € T, since —a 1is an
integer. Hence every element 3a € T has the additive inverse —3a also

in T.

Thus T is a group under addition.
11. If aob=aoc,

then

a~1 o (aob) = a—l o (aoc),
(a_-1 oa) ob = (a--1 o a)oc,
iob=1ioc,

b= c.

i

2-7. An Isomorphism between Complex Numbers AEA Matrices

In this section, as in its predecessor, powerful mathematical ideas are
introduced in an easy manner. The new ideas seem to arise from the context. 1In '
both sections, a rich background through which to make associations is most help—-
ful, though certainly not necessary. The text itself introduces a considerable
amount of rich material that is easy to handle. For the class thaé has not
been using complex numbers recently, a short review of these numbers and their
operations is in order.

When the class truly understands how it is that the algebra of complex
numbers is embedded in the algebra of matrices, a very significant goal will

have been attained.

74
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(a)

- and

(b)

and

(c)

and

(L -1) + (0~ 21)

=1-3i

(1 - i)(0 — 2i)

=—2:i.+2:i.2

=-2 =-2i
(3 -4i) + (L + 1)

=4 — 34

(3 = 41)(1 + 1)
= 3(1) + 34 — 41 — 412
=7 -1

(0 - 5i) + (3 + 41)

=3 -1

(0 — 51)(3 + 41)

= 20 - 151

Exercises 2-7

Il

!

s

(page 101]

(I-0) +Q-21) =
1 - 33,

1-nE-21 =
- 215 + 277 -
- 23~ 21 =
~ 21 - 27.

(31 -4 + (T +J)

]

41 — 37,

(31 — 4I)(T + J) -
31 + 37 - 47 ~ 43° =
71 - J.

(0 — 5J) + (31 + 4J)

1]

31 - J,

(0 — 5I)(31 + 4J)

201 - 15J.,

O
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0 0
o= 3]
1 0
1 < [o 1]'
-t O-
T [.0 =]’
1
1 X 0]
- <> for x # 0.
x 0 1 )
X

3. (a) True: £(x +y) = [xg'y 8] = [2)‘ g] + [g’ g] = £(x) + £(y).
(b) True: f(xy) = {’(‘)y g] = [g g] [g g] = £(x) £(y).
(¢) True: £(0) = [O O] = 0.

(d) False: £(1)

L}
fr———
[
[N o]
PO
S
——
O =
= O
j S
L]

(e) False: £(x)

1
m———y
[«
o O
[E——

has no inverse.

Relative to parts (d) and (e), however, within the class of matrices

f(x) the matrix [é g] = £(}) plays thc role of unit element in that

£(x) £(1) = £(x) = £(1) €(x), x € R;

and the matrix

O Ml

0 1
= f(?;> » X €R, x¢#0,
0 X

plays the role of the reciprocal (or multiplicative inverse) of £(x) in

that
£(x) f(-};) = £(1) = f(§> £(x).

4, Let x € G and y ¢ G 76

{pages 101, 102])




x = [a b], y = [_; ﬂ] B(x) = 8(y) = L.
Then

- ac — bd ad + bc | |
X = |—ad —bc ac —bd|’

and since

B(xy) = 8(x) 8(y) = (1)(1) =1,
it follows that xy € G. Hence, G 1is closed under multiplication.

Also, G 1is associative under multiplication, since 2 X 2 matrices

have this property in general.

1 0
1= [0 l] € G,

gince B8(I) =1 and 1 4is a rational number,

Next,

If x € G, then

»
]
Tio e
T oo

- a b
b aj’
2 2

since h = a” +b® = 1, Hence, G has the inverse property for multi-
plication.
Accordingly, G is a group.

2-8. Algebras

This section 18 a summary of Chapter 2. As is the case with all summaries,
it is superfluous if thé work of thevchapter has brought the class to the proﬁer
degree of mathematical maturity. By now, the student will clearly understand
that there are many algebras -— different, but not entirely different, from

the algebra of real numbers. He will begin to understand the scope and

)

[page 102)
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imaginative qualities of the discipline and to realize that the student of
mathematics has as much room to express himself as the student in any other
discipline.

78
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Chapter 3

3-1. Equivalent Systems

As mentioned earlier in this Commentary for Teachers, Chapter 3 may be

““ﬁﬁeyéigéb;émdf 2 x 2‘ matrices, constitutes a uﬂit by itself, qu the chapter
is not a prerequisite for.Chapter 3. The operations introduced in Chapter 1

~~are gufficient for the material in Chapter 3. Undoubtedly there will be many
.teachers who feel that it is better to cover Chapter 3 before Chapter 2 in order
to solidify the students' mastery of the operations defined in Chapter 1.

The over—all purpose of this chapter is to introduce the use of matrices
as a means of solving linear systems, to familiarize the student with the
inverse of a matrix and W;;hAa method for finding the entries for the inverse,
and to show how to use the inverse in practical situations.

In beginning the chapter, the teacher will probably wish to review
briefly the usual methods for solving systems of linear equations as introduced
in the students' earlier algebra courses. It may be well to start with systems

of two variables and to consider the methods of addition and subtraction, sub—
stitution, and graphing.

We have placed a great deal of emphasis on the notion of equivalent
systems in this section, and graphic solutions of two—variable systems offer
an excellent opportunity to display this equivalence visually.

For instance, consider the system:

2x = y =3 ) (1)

~5x + 3y = — 7, (2)

A solution by addition lecads next to the system

2x - y =3, (3)
x =2, (4)

followed by
x =2, (5)

79

uﬂ&éfﬁékéﬂmhnmédiateiy'foilowing‘Chapﬁer I. Chaptéfwi;‘ﬁhich is concérnédhﬁith"v o



70

yo=1. 0 o (6)

We may represent (1) and (2) graphically by

y
?

R | o 2,1)

T
+

From this, the solution (x,y) = (2,1) can easily be observed.

Now the system of equations
2x -~y =3, x=2,

which was obtained by algebraic operations from the first system, can also be

graphed, thus:

y

I Y

T /// (2,1)
} t t X

4

From this graph, it is quickly noted that the solution is again
[pages 103-106)
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(x,y) = (2,1).
If we continue our algebraic operations, we can finally obtain the system

x=2, y=1.

Again we have two equations that can be represented graphically:

(2,1)

From this graph, it is immediately seen that the solution is once again

(an).“ (2,1).
From these graphs, the student can readily appreciate the fact that all

three systems have the same solution. Since equivalent systems are systems
having the same solution, it follows by definition that the three systems

designated above are equivalent. The graphs are not a proof of this, but they

are aids in understanding the operations and their impéct on the systems.
Solutions of two-variable systems can be extended to apply to three—

variable.systems; it is unlikely, however, that the student will ever have

developed a solution in exactly the manner of the example in the text. 1In

class dzmonstrations, the teacher should always use the pattern of the text

and emphasize the systemati; nature, pointing out that this technique, while

different in structure, is véry similar to the usual addition method of solution.

The procedure used here, however, is one that generalizes easily and that lays

a foundation for the matrix methods you will subsequently employ. The emphasis

throughout this section should be on equivalence.

[pages 103~106)
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The earlier exercises provide practice in using the technique of solution.

developed in this section.

work.

1. (a) 3x
5x

(b) x

() x

Sx

(d) x

(e) x

(£) x

+ b4y = 4,

2y + z

y - 2z

3,

10,

3w =

2w =

7

0,

Exercises 3-1

15x + 20y

20,
15x + 21y = 3,
-y =17,

y =—17;

X - 2y== 3

2}"‘ 4,
x = 7,
x + 3y = 13,
2y +z =10,
5x + 3y = 17
y =3,
z = 6,
= ¢, we d.

82
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The last exercises are provided to lead into later

21x + 28y = 28,
20x + 28y = 4,

x = 24.

4x=4, 3}':'12’

y = 16, x = — 27



(K
2. (a) x+y=2, y
x—y-=2;

x =2,

y =0,

T

(b) 3x~- y=11,

Sx + 7y = 1; Yy
A
41
=3’
a - 2,

-1
3. (a) 1 0 0 u u
0 1 0 v = v |-
0 0 1 w w 83
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. (b) 1 0 0jjla x a x
0 1 Ol|lb y| = |b yji.
0 0 1 c z c z
4, x =2, x +0y +0z =2, 2x + 0y + 0z = 4,
y=3, —> 0x+ y+0z=3, —> Ox + y +0z = 3,
z=-1, Ox +0y + z=~—1, Ox +0y + z=-—1,
2x — 3y + 0z = - 5, 2x -3y + z=-—6, 2x =3y + 2= -6,
—> Ox+ y+0z=3, —> Ox+2y +0z2=6, —-—> x+2y + 0z =8,
Ox + Oy b ozom - 1, Ox + Oy + 3z = — 3, Ox +0y + 32z = -~ 3,
2x =3y + 2z =—6, 2x — 3y + z=—6, 2x =3y + 2z = — 6,
—> x+2y- z2=29, —> x+2y- 2=29, —>» x+2y- z2=9,
Ox + 0y + 3z = -~ 3, 3x + 0y + 32 = 3, 3+ y+3z2=26.

Since the solutions of A are solutions of B, the two systems are

equivalent.

5. (a) X+2y— 2= 3, (b) X + 2y ~ 2z = 3,
X~ y+ z= 4, X— y+ 2= 4,
4x - y + 2z = 14 4x — y + 2z = 15,
2x + y = 7, 2x + y = 7,
2x + y = 6, 2x + y = .
Since there exist no values of Therefore an infinite number of values

x and y that satisfy the two of x and y satisfy the two equations
equations thus obtained, the obtained.

solution set is @.

For x =0, y= 7, we get z = 11;

x=3,y=1, we get z

)
N

x=1, y=5, yvaget z=w 8§,

3-2, Formulation in Terms of Matrices

There are two major ideas introduced in this section. The first centers
around our ability to represent systems of linear equations in matrix form. This

[pages 106-112]
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is an enormous accomplishment. The quiet statement on page 108-109:

"It is an achievement not to be taken modestly that we are
able to consider and work with a large system of equations in
terms of such a Simple representation as AX = B,"

1s one of the most Significant in the book. The concept of the matrix equation
AX = B leads naturally to the second of the important ideas in this section,
that of the matrix function, If chapter two was covered, the student is
familiar with the determinant function

5 : M—> R,

having a set of matrices as domain and as range a set of real numbers. In this

chapter, we introduce a new function

f:X—>Y¥%,

where both the domain aud range are sets of matrices. Although we are concerned
only with the problem of finding the matrix in the domain that maps onto a
specified matrix in the range, the concept of a function from matrices onto
matrices is used in later chapters. Since it is one that arises naturally from'
matrix equations, we include it at this time. .

The principal technique to be gained in this section is simply that of
expressing linear systems in matrix form. We shall put it to use in Sections
3.4 and 3.5.

The exercises provide work in both the techniques and the underlying ideas
developed in this section, 1In particular, Exercise 3 should be worked out in
the form used in Section 3-1 in order to familiarize the student with a pattern

to be duplicated later in mgtrix form.

Exercise 32

1. (a) 4 =2 Til=x 2
3 1 Si{|y|] = |-
0 6 -lf|z 3

@ Lalbl - -
85
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2. (a)! 3x

(b)

2x

3u
2u

2x

2%
3x

3x

3x

3x

3x

+y
+0
+0
+0

+y
+ 0
+ 0
+ 0

+y
+0
+0
+0

+ 5z
+ 3z
+ 22

- 2w
- 4w

Sw

+

3z
3z

+ 4+ 4+ +

4z
6z

3z

+ + + +

+ 0
+ 3z
+ 3z

+ 0
+ 3z
+ 3z

I
€

+.4 +
€

3w

+ + +

1

1, 1

2, 1

-2, 2

10, ‘ 1
: 1

3, 2

0, 3

12, {3

1, B!

3, 0

- 12, 0

12, 3

-2, [

3,

- 6,

12, 3
, 1
, 0

~2, 0

18, 3

]
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x+ y+0 +0 =0,
0 +0 +0 — w= 3,
0 +0 + z+4+0 =-—2,
x+0 +0 +0 =17,

= O O M=
o O O =
(]

0 + y+0 +0 =—17,
0 +0 +0 + w=-3
0 +0 + z+0
xX+0 +0 +0 =7,

]

I

N

-
© o O
© ~ O O

x+0 +0 +0

"
~
-

I

0 + y+0 +0
0O +0 + z +0
0 +0 +0 + w

won
[
N~
. .
Cc © O =
o O = C
O = O

1
I
&

€ N < N
"
}
~

4, (@) Y=

1 2][x] ' [3
(b) 3 4] vyl = [2]’
from which

> A= [81 32 43 aa] » Y= [y1] B ®p Yy € R

AL = Y,
87
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1
2 =

[31 42 23 “4] X, [yl] ,
4

[alxl + a2x2 + a3x3 + 84x4] = [yl] -

The domain of X 18 thn set 'of matrices

LR
;W N

Since AX = Y is not one—to-one from X to Y, there exists no

inverse; for example, if a, =a, =a; =3, = 1, then

and

[oNeoNoN ]
OO O

are both mapped onto [l] .

3—-3. Inverse of a Matrix

The principal ideas advanced in this section are those of row operations
and row equivalence. Finally, we combine these ideas to produce ﬁhe inverse
of a 3 X 3 matrix. These coﬂcepts can be developed quite independently;
they do not depend on iinear systems in any way. In fact the common practice
in more advanced texts is to introduce linear systems after these concepts
have been developed. It is the purpose of the present text, however, to
provide something concrete upon which to build the students' thinking; thus

our development is interwoven with work on linear Systems.

[pages 113~116)
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ERIC

Aruitoxt provided by Eic:

. 79
The ﬁresent test gives a method for determining the inverse of a square
matrix, provided that it exists. It is definitely not the only method. We
now present a popular alternative method of finding an inverse so that, if you

wish, you may present it to the class and dispel any notion the students may

have about the uniqueness of the method they are learning. First we must define

a minor and a cofactor.

Let us consider the general 3 X 3 matrix

>
ft
[ I~ N ]
00 o
H

If we delete one row and one column, we have left a matrix comsisting of two
rows and two columns. If we delete the row that contains e as an entry and
the column that contains e as an entry, we ha'e a 2 X 2 matrix. The

determinant of this matrix is called the minor of A corresponding to e.

a c

becomes A ? ’
g i &g

énd ai — cg 1is the minor for e. Similarly, dh — eg is the minor for «c:

oo A
= o]

Now to f¢-:u the inverse Aﬁl of a 3 X 3 matrix A, we first write the
matrix having as entries the minors corresponding to the respective entries of

Hence we have

ei — fh di — fg dh — eg
bi —ch ai —cg ah - bg| .
bf — ce af — cd ae — bd

Next we write the transpose of this new matrix:

ei —fh bi—-ch bf — ce
di — fg ai —cg af —cd| .
dh ~eg ah —bg ae — bd

[pages 113-116)
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Finally the inverse is formed by alternating the signs of the terms (the minors

with signs thus chosen are called cofactors) and then dividing each term by

8(A), where
8(A) = aei + bfg + chd — gec — hfa — ibd.

Thus

[ ei —fh bl -ch Bf — ce W
5(4) 5(A) 5(A)
A_l = |- di — fg ai —cg _ af - cd
‘ 8(a) 5(4A) o(a) *
dh —eg _ ah — bg ae — bd
| 5(A) t(A) 5(A)

1f you care to, you can develop this particular form by carrying through the
proper series of row operations on A and I; but it is a herculean task.
Have many sheets of paper and be prepared to spend a great deal of time.

As in the case of 2 X 2 matrices, if
5(A) = 0,
then A does not have an inverse..
The exercises provide practice in finding matrix inverses. The student

should discern for himself through Exercises 3 to 8 some of the ideas developed

in the following Section 3—4.

Exercises 3-3

1. (a) [2 3][1 o]
— ’ )
1 ?- [0t Check:
1 .
-1 2|{o0o 1 2 _ 3
[2 3plL oof 7 7 2 3
1 s5][1 1 %’ ;' -2
[2 3yl o)
) I
1 os|[ 1 1], = lo 1}
0-7-1 =2} 90
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Check:

(b)

(e)

83

] ]
2 2 1 0
-1 J2|° to 1]’
: - 1
1 1 % 0
bl »
-1 V2 0 1]
[ 1
1 1 5 0 ;
0 1442 1
LZ
[ ] 1
’ 1 1 H
LO 1_ (21 +V2) 1 +42
1 1 1
1 ol 1_ _
2 201 ++42) 1+ 42
0 1 1 1
. 2(1 + /2) 1+ 72
(1 o] V2 -1
2(1 + ¥2) 1 + 42
0 1 1 1
S 200+ ) 1+42
1z - 2 N 1 0
2(1 +42) 1 +42 i
1 : .
-1 J2 0 1
L2(1 +v2) 1+ Y2 J
(4 —2 .
6 _3] , ©5(A) =0, so no inverse,
1 0 3 1 0
2 3 4,10 0|;
1 31 n 1J
1 0 3 1 ol :
2 3 4,10 01{; E)3
2 3 4 1 1

[page 117]



Since the left matrix will not reduce to the identity matrix, there

exists no inverse.
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Check:

(e)

— ~— 0 — o BN —
OO [« R-1 ~O - -0 - o -
l
—~ OO - OO - oo - 00 .I.Jvo
[ — 3
—
1 — T =
~e g ~o co- © o oo
M g o~ - o - N oy~ 2_../-1.
~ H
N ~ & O NN & &N 3
[S— ™ M ™ (e}
_— L 1 et

mreeee——
=N el =

N o~ ©

{ !

N ol ©

e

@ NS
3_2
|
1_8 s oS
|
\
| I's

0 Wir~ cofr~
9_2 {
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1 0 O
0 1 0
0 0 1
Check:
s u
28 28
8 _ 2
7 7
UL}
L 28 28
3 (a) 1 4 7
2 3 6
LS 1 -1
(b)
(c)
(d)

N = Nl o
oofto ~joo oo

Bler <y Sl

S
c —

—

o

[ ! N Lt
O ~IjWO o)

N
o

-9 11
28 28
8§ _ 9
7 7
_13 19
[ 28 28
~8 1
28 28
8 _ 32
7 7
13 19
L 28 28
-9 1
28 as
8 9
7 7
31
L 28 28
0
96
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1 1 1 3
4, X u. m r 7 7 7 3 1 -6 5
Yy v .n s = —% -;— % 0 -1 1 ©
zZ w p ¢t L -85- —g- —-tl? 4 3 -9 %
1 1
7 3 -1 2
9 1 3
= —-8' "g 2 2: .
s ;1
8 8 4
5. (a) 3 2 =2 1 12 10 1
2 =1 4 6 =13 - 8§ 17
-1 1 51 1-1 5 7
1 17 0 0 1 0 0
= 17 0 17 0 = |0 1 0].
0 0 17 0 0 1
(b) 1 1 12 10 3 2 ~2
17 6 -13 -8 2 -1 4
-1 5 7 -1 1 5
1 17 0 0 1 0 0
= 17 o 17 0 = |0 1 0.
0 0 17 0 0 1
L L
6. 3 2 =2 1 12 10 x 3 2 =2 17
2 =1 6 -13 -8 y = 2 -1 ~4 of,
-1 1 .'5]1=-1 5 7 z -1 1 5 0
L L
17 0 0 x 51
0 17 0 y| = 34 ,
0 0 17 zj -17
xw 3
y = 2 .
{z L—l

7. 2x+ y+2z-3u=a 0,
4x + y+ 2z + w=15

6x — y— z— w= 35, ) 97
4x .2y +3z - w= 2
Lpages 117, 118)
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[ 1

0 0 1 0 31
1 0 0.0 0

>

0 1 0 5 -1
5

0 0 0 1} (-3
1

0 0 1 o0 5
1 0 0 o0 0

>

4

0O 1 0 © -2-]-:
5

0o 0 0 1]||-3%

- '

1 0 0 0 0
4

0 1 0 0 5T
AT

0 0 1 0 5T
5

0 0 0 1| |-5

3 T

1 1

X OE' 1—0

4 9 _ 8
Y. 21 35 7165

1 4 _ 23

z 21 35 105

2 8 _.u

w 2l 35 105

WrHEWwWN

8. 9%~ y = 37,
8y — 2z =~ 4,
72 ~ 3w =~ 17,
2x + = 14;

9 -1 0 0l |x
0 4 -1 Ofjy| _
0 0 7 -3 z
1 0 0 3 w

{

N N, N
Rl=NleBle o

[

Sle v~ 5= 8=
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-1

wo oo

1 0 0 0
o 1 0 o
o 0o 1 ols
{o 0 0 1
1 o o o
o 1L 0 ol
0 0 1 1)}
o o o 1
1 0 0 0
4 1 0 0
»lo o 1 1fs
0o 0 0 1
1 0 0 o
4 1 0 0
» 128 7 1 1y}
o s 0 1
1 0o 0 o0
4 1 0 0
|28 70 1 L
253 253 253 253
Lo 0o o 1
(1 _ 63 _ 9 _
253 253 253
4 1 0
128 1. L
753 253 253
0 0 0
L
Ao 63 9
255 ~I53 T 253
4 1 0
] 28 1 L.
255 253 253"
.28 _ 7 _ 1
725 T I
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0 0 0 3| |- -k -k 22

0 0 o0 28 7 1 1
1 0 o0 1 ~1 +63 +9 +9
0 1 o0{*253 | -4 -1 36 36]°
28 7 1
LO 0 o 1. -3 T3 ~3 +84
% [ 28 7 1 1]] 37
y L =1 e 9 9fl-2
z| "253 |- 4 -1 36 36]||-17
28 7 1
w -3 —3 —3 84 7
[ 1012 4
1 ~253 j -1
253 | -506 2|
LZSB 1

3-4. Linear System of Equatioms

In this chapter we carry out the actual solution of AX = B. The techniques
involved were developed in the earlier sections and are simply combined here
and used to solve systems of linear equations. The pérallelism between elementary
row operations on the matrices and the procedures used in Section 3—1 should be
emphasized. - .

" The discussion about the exi;tence of solutions of systems of linear
equations may be amplified to include the ideas of linear dependence. 1In general
a system wherein no equation can be obtained from a linear combination of the
—Eéhhiﬁihé eqdatidns is said to be a linearly independeﬁt sysﬁem. CIf it is
possible to obtain Bne of the equations as a linear combination of the remaining '

equations, then the system is said to be linearly dependent. For instance, the
‘three equatibns,
(pages 146~123)
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x+2y— z=a 3,
x— y+ z= &
4x — y + 2z = 14,

which appear on page 120 in this gsection is a dependent system. Note that if
the second equation is multiplied by 3 and added to the first equation, then
the result is the third equation. Thus the third equation is a linear com—
bination of the other'two.

Generally, when the equatioﬂs of a system are not linearly independent,
there will be more than one solution, and therefore an infinite number of
solutiohs, in the solution set.

Although the language of the chapter must necessarily be complex in order
to describe what might be tersely described as ''the normal course of events,"

there are three possible eventualities that the diagonal method will produce:

(a) a contradiction of the form
0 = b,

where b 1is not 0, so that the set of equations has no solution;

(b) a unique solution of the form

xi = bi

for all 1i;

(c¢) an infinite number of solutions in which some of the variables are
expressed as linear combinations of the remaining variables, which might be
assigned arbitrary values.

The exercises are routine practice in the solution of simultaneous systews

by means of matrix operations.

Exercises 3—4

1. (a) 3 planes parallel. -
2 planes parallel, 3rd intersecting them. .
3 planes collinear.
2 planes intersecting, 3rd intersecting them but not collinear with them

3 planes concurrent. '

{pages Liywicd) ' ..
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2(a)

(b)

3 planes coincident.

2 planes coincident, 3rd parallel to them.

x
2x
3x

2 planes coincident, 3rd intersecting them.
+ y+2z =1,
+ z = 3,
+ 2y + b4z = 4,

o 1], ;
4 0 O
il
9 [ h
1 2 1 1

0 o =2 0
-2 3|, |- 1 o] ;
1 1
O~E L"Z *'2- 1_4
o o] [-= o 1]
-2 of, |0 4 -6,
o -1 |2 =% 1
T2 2
r
0 0 -2 0 1
s =2 3
0 FV/RL
o 1] [1 [,
-2 3| (3] = |1
1 =2 4_ -1
r -9
x 2
W 103
= | 1] .
{zj -1

- [page 123]
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2. b [1 1 1]
1 1 24,
LO 1
1 0 O1
1 1 21, {0
o 1 1] |o
1 0
1 -1 s
{0 1
r1 0 01 1
-1 ol|, [
1 1 0
L 4 L
0 0W 1
+H 0f, |+
0 lj -1
x-‘ 1 0 -1
yl| = 1 -1 1
z -1 1 0
x|
y| = |0
Lz Ll
(C) X - Zy +z=1 ’
X+ y—-z=1,
X+ y+zm=4;
e —eeee =201
- 2 1 -],
1 1 1

o o
0
0 -1
0
0
0 -
-2
0 1
o .
-1
0o 1
0 -1
-1 H
1 0
6
7
1
0
1
0

104
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z=0,

(d) 2v+x + y +

v—x+2y+ z=0,
v —x + 5y + 3z =1,

z = 25

v—-x+ y~-

o o o

z+ w=0,
+32+2w=0,

2x +y +

3x

0# 1L

+22 = 2.

3x

No solutions,

o O o

O O ~ O

o ~ O O

[pages 123-124])
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2 1 1 1] 1 0 o o]
3 3 2 0 1 1 0 O
6 6 4 0]’ 1 01 O0f;
0 0 0 0] o 0 o0 1
(2 1 1 1] 1 0 o o]
3 3 2 0 1 1 0 0O
0 0 0 Oof? (-1 -2 1 of?3
0 0 0 o0 0 0 0 1
2 1 1 1] x| 1 0 0 of] 2
3 3 2 oyl 1 o of|=
0 0 oflz| " |1 =2 1 o i
L 0 0 O0f|w) o 0o o0 1

2+ y+ z+uw=2,
3x + 3y + 2z =-1,
0=0,
0=0.
An infinite number of solutions. You might, for example, give values

to x and y and determine corresponding values for z and w.

3-5. Elementary Row Operations

The purpose of this section is to interpret the row operations in terms of
the more fundamental operation of matrix multiplication. We should perhaps
stress that matrices of the form J, K, L, are the only ones we call elementary
matrices. Their inverses f—l, K—13 ﬁ—l, turn out to be matrices of the same
‘form. Some students will be quick to note the form of the product of two

elementary matrices, such as

1 0 1 1 0 0O 1 0 0

0 1 0 0 2 0 = 0 1 0},

o1 1o o 1 0 2 1
[pages 124~129]
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and will be tempted to decompo-e¢ matrices into factors of the latter form. We
feel that such students should be complimented for their insight but must be
cautioned that the matrix

[Nl
N = O
=~ O O

is not an elementary matrix.
Another point that should be stressed is that to perform our row operations
we multiply on the left by elementary matrices, and the student must remember

that matrix multiplication does not commute. Thus

OO =
[
= O GG
[eNeN 1
. ONO
= O O

will first multiply the second row by 2 and then add the second row to the third.
On the other hand, ‘

1 0 Ol 0 O
0 2 0|]{0 1 O
0 0 1]|0 1 1

will first add the second row to the third and then multiply the second row by

2. For comparison, we have

1 0 O 1 0 O 1 0 0O

0 1 O 0 2 0 = |0 2 0},

01 1 0 0 1 0 2 1
and

1 0 O 1 0 O-| 1 0 0O

0 2 O 0 1 0 = {0 2 0O,

0 0 1 0 1 1 0 Jd 1

- which are quite different. o
The importent thing here is for the student to understand that he can
perform a row operation on a matrix.by left-multiplying the matrix by an

[pages 124~129)
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elementary matrix, and that all matrices obtained as a result of such multipli-—
cations are row equivalent. 1In particular, any matrix that has an inverse is
row equivalent to the inverse. '

The exercises are designed to fix the idea of row operation by means of
left multiplication of elementary matrices. Exercise 1 is concerned with the

determination of some elementary matrices. Exercise 2 asks that a product be

decomposed into elementary mat-’ ote that in this ex~rcise the
angwer is not unique, but t ‘ multiplying will determine the
nature of the elementary mc Pw: .ise 3 is designed ¢o show the stu.

that if he can find a set of elementary matrix factors of a given matrix he
can find the inverse of the given matrix by finding the product of the inverses
of the elementary matrices. These matrices can be written by inspection,

although the order of the multiplications must be reversed in accordance with

~1 o -1 -1 o P ey |
A = (!-1 Ez E3, -a-,En) = En ,o--,E3 E2 'El .
Exercise 4 leads the student toward the generalization of the concepts we have

already studied in the case of 3 X 3 matrices. Exercises 8 and 9 are designed

to lead the student into a consideration of column operations.

gigrcises 3-5

1 2 3 1 2 3
1. (a) A |-1 0 2| = |- o 2],
0 ~1 1 1 -1 -1
1 0 O
A= {0 1 of .
0 -1 1
1 2 3 0 3 4
() B |-1 o 2| = |1 o =2},
0 -1 1 1 -1 1
1 1 -1
B=w [0 -1 O] .
0 0 1

109
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o O rm

o ~ O

(a)

2,

For instance,

There are others.

The solution here is not unique,

r————
o O o
{
o ~ o
-~ O ©
e
P mme———— |
o o ~
o =~ O
i
-~ O ©
e —————]
r———
o o ©
o o ©
-~ O o
[ S ——— |
R ———
o o ~
QO - -
-~ O O
rrtrt—————
————}
o o ~
o wln o
-~ © ©O
i ——————

2(b) and 2(c).

nolc

The same rems

o O ™
o = O
- O O
U —
—
o o ~
. QO = e~
. |
[———)
o o — 1 - O o
[ o o [ERSEEE e d
nl\ll]
o ~ o o .ﬂ o o o ~
- o o O ~H =~
—_ -~ o o {
-||I||‘|IL
—
o o o —— - O O
o O 9~ PRSI
o ~ o —_—
- - .- O o O ~
-~ O ©o
[ER——— -~ O O o ~ .ﬂ
PR
r——
QO e~ e~ —
- o ~ -~ O O .
—_— e :
o ~ o
O ~ O — 1
o O ~ (=} Onﬂ
-~ ©o O i
—t - o O
s}
— o ~ O O™
o oOdlm — | I
| o o ~
-~ O © —~ 0O
010 JE) e
O ~ O I
n ]
-~ O © -~ O O
] n -
o orfw
— — — I
On._..l - O
O ~ M
- -~ O !
o ~H .0 { {
- o o < o o = o o
”~~ ”~ ”~~
) [3) ()
~ ’ ~
.
)

o o o
!
o ~ O
- O ©O
O =~ o~
|
o ~ O
- O O
o © i
o ~ O
- O O
—
°C° T ceaa
o ~ O o~0O
- O w .100.

o o ~
!

© + O
-~ o o
—_ = =,
~~

o

~
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() [r -1 1|7 10011—10 1 0 -1||1 o0 o©
0 1 0 = 0 -1 O 0 1 0 0 1 0 0 -1 0
0 0 1 tO- 01 0 0 1 0 O 1 0 0 1
1-1 -1
= 01 ol .
0 O 1
L - i
1 0 0 O-L
0O n O O
4, J type: 0o 0 1 ol multiplies the second row by n.
{O 0 0 1
- -
L 100 ‘
0 1 0 0
KL 0 0 1 of° adds the seccond row to the first row.
0 0 0 1
r W .
1 0 0 O
0 0 0 1
L type: o 0'1L ol interchanges the second and fourth rows.
01 0 0
5. X—- y=—=22= 3,
y +3z= 35,
2x + 2y — 3z = 15;
[ hi
1 -1 -—2} [xi 3
0 1 3]iyt = 513
L2 2 -3 [z 15
[ 11 9 7 1
1 -1 =2 11 11 11
6 1 3
0 1 3 = 1T "1t 11| ¢
2 4 1
2 2 —BJ iT iT —iT
[ 9 7 1 ,
| * T 1 irt||3 7
6 1 3
vyl = |- 1™ 1r|l3| = (2]
2 4 1
z iT T 11 15: 1

[page 130]
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6. (a) 1 0 1 1 0 oW
0o ~1 2|, 0 1 of;
LZ 0 1 0 0 1
1 0 1 1 o0 oW
0 -1 2|, 0 1 0]
1 0 O L—l 0 1
0 0 11 2 0 -J
0 -1 2%, 0 1 of:
Ll 0 0 -1 0 1
0 0 11 2 0 --11
0 -1 O0f » 4 1 2]
Ll 0 0 L-—l 0 1
0 0 11 2 0 —J
0 1 0> 4 -1 2|
L1 0 0 -1 0 1
1 0 O ~1 0 1
o 1 of, 4 =1 =21 .
lo 0 1 L2 0 -1

@ ool [o o 1]t o -;-oo 1 6 ofll2 o o
D -1 2] = 0o -1 0ollo1o0l]-110|llo1 o0
01 0 0 0 oo 1llo o 1llo o 1
o -1]1]1 0 o
ollo 1 o
0 -1 0 1
4 o 1]
= |4 -1 =2|.
2 -1
|2 0 )

(c) The azswer to 2(b) is not unique. The order in which certain of the

2wrxtions may be carried out is arzitrary.

113
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7. By Theorem 3-1, we know that

(aB)”! = S

This is the first step in the proof by induction.

Suppose we know that

~1 A‘,—l .

(AB...])" L = J 1

ee B
Then
~ (AB.-+JK) L = ((AB+--J)K) *

by the associative property for matrix muitiplication, whence

(AB- .JK)—]' = K—l(AB-- .J)—l

by Theorem 3-1, so that

(aB+-3) L = KLt 7 iAY
by the induction hypothesis. Accordingly, we have
1 ~1 -1 -1

(aB---JK) L = K55I,

and the induction is complete.

8. (a) a b ‘c.\ 2-0 01 2 b ¢~
d e £]10 1 O m |2d e £ .
g h 1i[]|0 0 1 ng h 1
® la b c]f1 o 1] a b a+c
. d e £]]|0 1 0] = |d e d+ £} .,
{g'h i LO 01 Lg h g+1i
(¢) a b cT 3 0 OW -3a 2b + ¢ c
d e £{]0 2 0| = |3d 2e + £ £l .
g h 1|0 1 1 {33 2h'+41 1
| ]
[page 130)°
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9. Right multiplication of matrices by matrices formed from the products of

elementary matrices produces changes in columns similar to the changes

made in rows by left multiplication by elementary matrices.

3-6. Summary
This section quite deliberately is somewhat more than a summary. In it,

the student reviews the procedures introduced in the chapter, but with slight
variations calcﬁlated to give him a true mastery of the techniques involved.

The method developed earlier in the chapter is here called the "diagonaliza—
tion method" and is contrasted with the "triangularization method You . lzke
stress these phrases to the class, along with the suggestive word, 'pivot."

The triangularization method is exemplified by system III, and the diago— -
nalization method by system IV, on page 104.

You might point out to the class that the triangularization method is an
excellent systematic method-for solving a single set of linear equations. (The
diagonalization method is usually more efficient when two or more systems with
a common matrix of coefficients are involved.) Thus, the last equation in
system III might be solved for 2z, the result substituted in the second equation’
to yield a value for y, and then the two values substituted in the first
equation to determine a value for x.

"You should also note the streamlihing of the diagonalization method through
the introduction.of complete pivoting. This notion was possibly too invelved
for the class at the start of the chapter, but it should be quite easy at the
-end.

For review exercises, you might reassign some of the problems already
assigned; but this time have the class use the triangularization method and .the
streamlined diagonalization method.

115
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Chapter 4

REPRESENTATION OF COLUMN MATRICES AS GEOMETRIC VECTORS

4~1., The Algebra of Vectors

In this chapter, a considerable change is made in the nature of the subject
matter. Although it may be helpful to study Chapter 2 and Chapter 3 before
Chapter 4, this is not necessary since the present material is largely iadep.udent
of those two chapters. Students will ' abl~ L0 uwauu,. ..z material of Chapter
4 if they are proficient in the operations of matrix addition énd multiplication,
In fact, Chapters 1 and 4 together make a worthwhile unit i€ time is limited.

. In Chapter 4, the:subject of vectors is introduced. The pace is gentle ét

~ ‘the beginning in order-to allow sufficient time for the students to become
famfliar with this new mathematical concept. In Chapter 5, linear transformations
are introduced. Themmaterial of the latter chapter is considerably more difficult
to comprehend, and a-~teacher should not contemplate handling Chapter 5 unless the
class can easily handle the material of Chapter 4, Also, the time needed to
understand and complete Chapter 5 is greater than the time necessary to handle
Chapter 4 adequately. .

In Chapter 4, the exercises vary from simple and straightforward to difficdlt'
and abstract. Care.should be taken in assigning these problems, Some of them
will extend even the most capable students, particularly the exercises dealing
with n—dimensional vectcrs, !

In Section 4-1, we consider a special set of column matrices, namely the
2 X.1 matrices [z] » where a and b are real numbers, By definition,
such a matrix is called-a column vector of order 2. Since these vectors actually
.are matrices, all the familiar rules pertaining to matrix operations hold for

"""" them;>ééAsummarized in the two theorems stated in this section. Alfhd&éﬁ the
information contained in the theorems is familiar, it is well to review the
theorems at length and to do all the exercises involving these theorems in order
to establish clearly in the students' minds that column vectors are matrices.

If time is short or the ability of the class is modest, it is better not
even to begin a discussion of column vectors of order n. While able students
wil}l ‘beichallenged By the concept of an n—dimensional vector, and it is relative—
' ly easy- to work with the algebraic propertfes of these vectors, a difficulty

arises with their geometric interpretation or représentation. This stresses the

116
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fact that it is important to continually assert that the column vectors or

matrices have an algebraic life of their own quite independent of any geometric
interpretation.

Exercises 4-—1

1. I. (a) V+W=W+V:

(- 1) - (2]
ARG

(¢) V + 02X1= V:

fl
—
w =
—

+
—
o &
——

]

|
~N W
e ——

@ V+ ) =0,

IT. (a) r(V+ W) =1V + ri:

' (B L1
(2] 2 03] - [e) ] - L]

117
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(b) r(sV) = (rs)V:
(ol B
(2)(-1) [ZJ =—2[Z] . [:g]
() (r +8)V=r1V+sv: ,
2 + (1)) LZ] = (1) [Z] - [Z] {
el [ R -1
(d) ov =0
-2 -
| (e) V=y
o) - [ - i)
(f) ro =0
[o] - o] -
III. (a) A(V + W) = AV + AW:

118 .
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(e) IV=V:

W=
[page 135]
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in the (pussibly simpler) form

a

Further, since

or

Now,

so that

A 1 exists, and we have

Afl

AV = 2(AW) + BW.

5(A) ="'14#0:

av =21 Aw + @t Byw,

V=2u+ (a7t B)W.

i1
-1 7 14
Ar= 2 _s e
7 14
1 1
Y A N R
2 _32 || 2
i 7 14
1 [ 1 1
L0707 3
2 _stl
J 7 7
1 [ s
7
Tl
J { 7
6 48
7 or 7
5| u7|*
7 7
[page 135]
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3. We can first solve the given equation for V, thus:

2V + 2W = AV + BV,
2W = AV + BV — 2V,
= (A + B - 2I)V,
V= 2(A+B—21)_l W.

We now compute

-2 0
-1 -3 0
" (A + B~ 2I) = N
. L 0 - 3
2(A +B — 21)_1 = [—(1) _(1)] = (-1)1,
V= (-l)IW

4, A(3V = A(BV),
A7l Ay = a7t Ay,

I(3V) = I(BV),

(13)V = (IB)V,

(31~ IB)V = 0,

e |
. |

(31 - 1B) = [_i —i] -

=N
N =
—
-

O W
wo

[
-
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lv. — 1v, = 0, N

1 2
~1v1 + lv2 =0,
Vi ¥ Vo
v, |
Lvo= Vl , V1 € R.
1] 2, a5, [1] ST
5. (a) A ol = |a a ol * |a .
] 21 222| (O] "1
T r " -
0 an a121 0] 812
(b) A 1] ¥ Ja a 1y % |a ¢
] 21 %22 L™ 22
all PO
(c) 1If a = [0 s then a, = 0, a, = 0.
21
—a ] -0
12
1 ag| LO} » then a), =0, ay, =0,
L .

(d) Theorem. If A 1is & matrix of order 2, and if for every column

vector V of order 2 we have

AV = °2x1 ’

then A is the zero matrix 92><2.

6. (a) Theorem. If A 1is a matrix of order n, and if for every columm
vector V of order n we have
AV f 0nxl »

then A is the zero matrix 0 .

nxn 122
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1 %12 %13
(b) Let A= 81 85 8y *
831 %32 233
Now
‘ 1 all 0 312 0
A0 L an | All}l = 8y51 > A|O
[o 331 0 32 1
alll 01
If al = 0| , then 8, = 0, a,, = 0,
%3] |°]
812} 01
if 8,5, = |0}, then a,, = 0, a,, = o,
{832- LO
[ 1
a13 0
£ = = =
and if 323 0} , then 313 2, 323 o,
1233 | I
Hence A 1is the zero matrix.
a11 B P
(¢) Let A= |. . .
an]_ e e e ann
'Now'
0 -
3 11 1 81 0
A o a . N A|lO = . 20eey A .
0 81n 0 82n 1
[page 136]
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If E = E » then a; = 0, a), = O’f"falﬁ = 0}
aln 0
%1n 0
and if : = K then a8, = O,...,ann @0,
a 0
nn

Hence A is the zero matrix.

7. We are given that AV = V for every V. This gives us a great deal of
freedom to attempt to simplify the problem. Let us look for soﬁe V that
will make an easy computation (cf. G. Pélya, How To Solve It, Anchor
Publishing Co., paperbacl).

(i) va= g] makes everything easy, but unfortunately gives us no

information.

(i11) v = [é] gives us this:

5

-]
o
——
ey
(=2
e d
n
p—
(e
——
-

At this stage we know that A must be

HHE

but we do not yet know what restrictioms, if any, must be put on b and d.

(iii) Let's try another V. _If AV = V lolds for all Vv, then, in

pafticular, it must hold for V = {2 .

ER{IHIEEHE

[page 136]
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and we now know that A must be

i)

Theorem. If A 1is a matrix of order 2, and if for every column
vector V of order 2 we have

AV =V,

thqp A=T,

Note: This leaves one question unanswered. We have found that A = 1
is a necessary condition for AV = V. Is it also sufficient? Yes, it is.
We prosglthis as follows: - !

1 ool _ ™
01 x2 % ’

as we discover by multiplying out 1IV.

We could, consequently, strengthen our theorem to state that AV =V
for all V if and only if A = I.

8. Theorem. If A is a square matrix of order n, and if for every column

vector V of order n we have

AV = V,
then A = I,
Proof. Let
81 "7 ®1n 1
A= . . and V = . .
a a v
nl nn n
Now 1 25
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1 1 1 all
A 0l o |© and A ol 1
0 0 0
. anl
aence
all = ] o = 331 22 eve o= a:;; =0.
A
0 0 0 La,
1 1 1 U
A Q = 9 and A 9 = -2 H
0
0 0 lanZ
hence
312 =0, 322 = 1, 332 = 342 = eee m an2 = 0.

Continuing, we see that

aij =1 forall i=j,

aij = 0 for all i # j.

9. Theorem 4~1', Let V and W be row vectors of order 2, and let A be

a square matrix of order 2. Let r be a number. Then
V+W, rV, and VA

are each column vectors of order 2,

Thaorem 4~2', This is identical with Theorem 42 except that the word

“ecolumn" must be changed to ''row", and products of the form

(2 9E)
c d Xy ?
[page 136]
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whane'ver ey occur, must be changed to

2N
a
*1 %2 (c 5

Tk, . ===ns the following changes:

o0

17 () . rcomes (V + W)A = VA + WA,
{b) -=comes V(A + B) = VA + VB,
(e w2comes (YA)E = V(AB),
ty1 becomes V 02 01 %2’
(e; i‘becomes VI = V,
£} ecomes (rV)A = V(rA) = r(VA).
f4ne) iy, to show the isomorphism, map every matrix into its transpose,

wri » -avermy column vector as a row vector, and reverse the order of products

as = hawx just done above.

4—2. Vectzors and their Geometric Representation

In; thds section, 1 correspondence is established between the set of all
column verzors of order 2 and the set of all located vectors in the plane.
As this corzept is developed, students are apt to use the term 'vector' loosely

and eventually pevsuade themselves that the column vectors (matrices) and the .

arrows are ame=.and the same= thing. This idea is to be avoided since 1t 1imits
the power-af im:. wector comzept considerably. For instance there ias a very

- “important. aigemmmic life fur a vector with six entries although this has no
geometric repzosantation of an ordinary nature. The geomet:ric repregentation
enables the student to visualize the algebra and helps him comprehend the
‘relationships; it does not 'prove' the theorems of the algebra nor does it limit
the operations. -

At the: begimming of the:section, a column vector is associated with a
located vector, that is a vector with a fixed length and a fixed direction and
an arbitzmry dmitial poiat. The two properties of a geometric vector,.length
and direction,, are equally well represented by each element of a set. (The

latter i# sometimes labeled an equivalence class of vectors.) We say the vectors.

[pages 136-142)
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i the following diagram are equivalent.
Yy
A

The concept of equivalent vectors has great power and is immediately applicable
to proofs of familiar pléne geometry theorems (See "Geometrical Vectors and the
Concept of Vector Space " 23rd Yearbook — National Council of Teachers of
Mathematics.)

Since it provides a unifurm pattern that will bring about a greater class
‘cohegivenese and yet not sacrifice any desirable power, we quickly introduce a

standard reprnsentation. By this time, the students will be somewhat familiar

. understanding. ' e e

Two properties associated with the directed line segmenrs that correspond
“to column vectors are length and direction. Note that for “=ie columm vector

v-[2].

- the symbol |IVil stands for the length of the directed lin=s segment; it is

;équal.to the nonnegative square root of u2 + v2:

VI = /a2 + 2 .

[pages 136=142].
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The direction of th: secoment is fiven by the two direction cosines. 1In ele—
mentary algebra we l: 2 to zmswudare a slope with a line segment; but direction
is not specified by : -ing the slope alone, since a line sith a particular-slope
may have either of t: diffezr==t directions, or not beu:.mcted at all. For
instance, a line with zlope 3/4 uay be considered as zwinting toward the upper
—izht as well zs towzrd the iawer left.

In order to avoic¢ certaim inwonveniences that womlc srrherwise arise, we
z=bitrarily choose to say thax =he zero vectar is a <irecred line segment and
that it has the same directicc as any other wector. 3If this were not done, the

presentation would not be so elegant, since exceptions wouid occur.

Exercises 4~2

1. Same length: (c), (e), (£).

Same direction: (a), (d) (because the zerc veghor 'has the same
direction as any and every other vector"; see p. 1655 =op), (8), and (j),
provided that t > 0.

Some pairs lie along the same line, but not:.:alomg the same ray
(i.e., they have “opposize' directions). These are (b), (d) (again,
because of the universal direction of the zero vector), and (j) if

t <0 (note that t =10 also gives us the zero vector).

(2,3)

t=1

129
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!
1 (4,6)
1
+ +———t——p %
t= 2
y
A
(6,9)
-+
+ +—+ - x
t=3

[page 142]




4;
e
!
; > x
-2,-3) |
t o= -1
Y
A
1
et —> X
(~4,~6)
t == 2

[page 142:
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1
%
: + t —+ . > x

(~6,~9)

It is also inmeresting = compare [g! amd 3 ['3'] in the same
diagram: v B
by gy (49)
4 b
! |
! /o
: |
- — Sy
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The lengths and direction cosines @, P are as follows:
t | Length (0] B
1 /13 | 2//13 | 3413
2 | 213 | 2//13 | 3413
3| 3/13 | 2//13 | 3//13
~1 Y13 | -2/¥13 | -3/¥13
-2 | 2¥13 |~2//13 |-3//13
~3 | 3//13 | -2//13 |-3/V13
3. (a)
y
1 0 1
&) + 18] - 3]
[01 A
D RVA
H
Vector | Length a p
1]
RN
0]
[1- 1 0 1
hw 2 vz |z

[pages 11}2;143]
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- [:}

Vector | Length a B

THEE

2] | m | |

[‘2*] 25 215 | B

(e) y




(d)

Vector | Length o B
[é] 1 1 0
["z’l | w5 |25 | us
[‘ﬂ 13 | -3//13 | 2//13

Vector Len;th o =]
[g] | B '2/fi_3 3//13
[_i] B |3 |
[ g] /29 528 | 247

135
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y
A
T
4 -+ —t » X
.|
//n [ 7
/ -2
7/
7/
5
-4
Vector Length (04 B
[_2] JAL | sHEL | —apEl
[g] 242 142 142
L | & | s | s
i 1 0
V = li;] t[m] + [b
& wm=1, b=0;
Vet [i] . Y
, 1
! x
[page 143)
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y
y
2
cenve 2]
+ ——p X
: +
tm~—1; Va {:i] . "
- - 2; = |72 - y
ez v [
y
0 X
t =0; v .
H{O] ~+++—Ax

In each case, the point (x,y) 1is located at the tip of the arrow.

An important theorem tells us that these five points (plus the in—

finitely many points obtained from other values of t) must all be collinear:

y

(b) We show here the five vectors on a single diagram. Again, the five
A

“arrow-tips' are collinear.

[page 143) - .
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(c)

5. If A and B lie on the same ray from the origin, their direction cosines,
evidently, are equal, If A and B do not lie on the same ray from the

origin (as in the case shown in the figure),

138
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then they have "opposite'" directions; thus if

then
ta
where t < 0. The direction cosines of A, then, are

a » b

? ’

'\/az+b2'¢\//az+b2 '

and those of B are

x =

——8 b
el ' el .
a? + b2 a? + b2

Since t <0, = — 1, and the direction cosines of B are the

-
Iel

negatives (or ''opposites'') of those of A.

6. (a) [3] = t[;] = [2:] , where t € R.
SRHENEE
(c) ¢t [;1;] = [321 , (which, of course, is the same as [1§§]> .
@ 4] - 2]
(e) t [g] - [321 , <which could also be written [‘ZD .

139
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4-3., Geometrical Interpretation of the Multiplication of a Vector by a Number

The ideas presented in-~this section can easily be grasped intuitively. To
present proofs is somewhat more challenging. This is a situation that occurs
frequently in mathematics. Although it may be cumbersome and seem unnecessary
to the less sophisticated students, unless we are to extend our postulates or give

an intuitive exposition, we must give proofs of our conclusions or theorems. 1It’

is always easy to shatter an intuitive conclusion by asking the very proper

mathematical question, '"Why?"

As statéd in Chapter 1, the multiplication of a vector or matrix by a
number is frequently referred to as scalar multiplication. This should not be
confused with the multiplication of a matrix by a matrix, or with the multipli-—
cation of a vector by a vector.

Exercises 4—3

1. (a)

(b)

|
|
|
|

(£) [:122} .

(g) [:] is one possible answer. There are infinitely many others.

Some other correct answers:
h h n| [ h
ol 2h|’ f{~n|* |7n}|’ 302 + 3] °

[pages Ls4=147]
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(This last answer is tricky; it is true that [3h2h+ 3] ¢ L, .since

h
32 + 8

a 2
3

leads to a quadratic equation with no real roots.)

2, (a)
f (3,3) o= 751— ,

[ RHERHE

(b)

ﬁl
| (10,8)

(5,4)

(©)  (c12,15)

(4,—51page - | [_12] o, [ A
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(d) [_321 ’ [;12] are coliinear, with [33] =2 llé] .

(e)
Yy
\ 2
o= o
4 s,
(-8,4 1 h
=4
[ =5
. 4 ¢ + =x
(23"1) 2 - 11{-8
~1 2 41 °
y
| (2,9)
(£) [8] » the zero vector, may be _assigned the
< e
direction of any vector;
0 2
HEOHE
3. Let
v v
2
i 2 T

be direction cosines for

and let

W W
and — 2

IEIL LWl
[page 147]
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be direction cosines for

Since V and W are parallel,

v w v w

1 1 and
v Wiy ?

-
N

Hence w = e—

Since Vis Vo Wi Wy are real numbers,

v v
-w—l- = w_?. = T, r € R,
1 2 :
Now v) = 1w and vy = TW,.
v ™ w
Hence ;—1- = rwl = T wl y Or V= rW,
2 2 2 '
v1 : vy rvl 0
4, (a) Let V.= . Hence V= r v = | = .
V2 2 V2 0
Since rv, = 0, and r # 0, we have v, = 0; similarly, v, = 0

(from the field axioms for real numbers). Hence,

(b) Since rv, = 0, and vy # 0, we have r = 0, as in part (a).

vy v, + vy (1 + r)v1
., Let V= so that V + rV = = .
3 vy ? vy, + v, (1 + r)v2
[page 147)
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Direction cosines of V:

v v

o= —L , B = 2 .
2 2 vy + v
VitV 1tV

Direction cosines of V + rV:

v, + vy - (1+ r)v1 vy
Q= = = o
2 2 2,2 2 - 2 2 !
.\/(v1 + rvl) '+~(v2 + rv2) AV/Zi + r) (v1 + v2) A/ v + v,
+ v
- 2

Ba
v1 + v

<:1
NN

‘ wheh r>-1, 1l+r >0, and the signs are both + .

When r<—-1, 1+ r <0, and the signs arecboth - .,

1V 4+ VI = \/((1 + r)z(vi + vi) = |1 4+ rlA/ vi + v§ .

= |[[VIl 11 +rl.

4~4, Geometrical Interpretation of the Addition of Two Vectors

Through their study of physics, many students will be familiar with .the
parallelogram of forces. In the physical sciences, a force can be represented
‘a8 .an arrow. The length of the arrow indicates the magnitude or strength of the
force, and the direction of the arrow indicates the direction of the force. If
‘two' forces act on a body at the same point, the effect is the same as though"
the body were acted on by a singlﬁ force. The single force, or resultant of ﬁhe
two forces, is represented by the diagonal arrow of the parallelogram having the
"two arrows representing the original two forces as sideé.

When addition was studied in Chapter 1, we learned that the sum of two

matrices that are conformable for addition is found by adding together the entries
[pages 147-151]
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in the same position, pair by pair. When this rule is applied to column vectors
of order two, it means that we add the two first entries and then the two second
entries. When column vectors are represented as directed line segments from the
origin, then'the first entry represents the abscissa and the second entry repre—
sents the ordinate. The sum of the two vectors is represented by a directed

line :segment OP such that the coordinates of the point P are the two sums of
the respective entries-of the original vectors. It is to be noted that no
exception need be made if the two vectors are parallel. The key to the proof of
the theorem:that a parallelogram is formed is the proposition from plane geometry
stating that "if the opposite pairs of sides of a quadrilateral are equal, the

quadrilateral is a parallelogram."

Exercises 4—4

famed

IMa

¢
“(24) 7
(5,3), " I, /
/
/ -~ aun
bt 4 —x
(""7 )—?S‘ -

145
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T 9,7)
2
e
7~
7~
~
4 ~ 4
| (2,3). -7 (7,4)
/ﬂQ
/s
//
) —(5,1)
-+ +—t— 2 +—+ P t +—t —t—t —P %
/ . ~ .
/ -~
7 ~
/ &
¥ |
("2,‘-3) ) i
4 2]
~ Vl\ T ¥ kgl
\\ *"\\
\\l%\p 2 \\\
] N\ ™"
(2)—2) (3,-2) (4,-2)
i
147
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In constructing the sum, the order does not matter. But in constructing

the difference the order must not be interchanged.

2. (V+W +U:

V4 (W+U): y

148
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3. (a) [6] _
7
3
U = :
H
o 2]
(6,7)
1 1 W ’
o 2]
1 v
U+V+W
+—t —+ + » x
(b) [81 :
y
U= [_12;1 A
Vo= [-;j
W= [‘éw

[page 152])
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(c)

A

(8,2)

U+V+W+T

.
t +

X

»
v

(d)

- Ay

| 0,0y

[page 152)
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4

4, (a) V and W represent two geometric vectors equal in magnitude and

opposite in direction.

(b) A triangle may be constructed from three line segments having the
length and direction of the geometric vectors V, W and U.

(¢) A quadrilaferal may be constructed from four line segments having the

length and direction of the geometric vectors V, W, U, and T.

sova o] we 3]s v V3]

oT is the line segment from (0,0) to (u+1r, v+ 8). Length of

2 —
Eﬁ = x/%u +r—u) + (v+8~— v)2 = r2 + 52 = length of OT.

Slope of PR = %—%}%—E—% = % = glope of 6&.

4~5, The Inner Product of Two Vectors

When addition was discussed in Chapter 1, the sum of two matrices of the
same order was defined. The sum was obtained by adding corresponding entries in
the two matrices. At that time, it may have seemed natural to obtain a product
by multiplying corresponding entries. Such a product, however, was not defined.
When the 'product' of two matrice§ is considered, the product obtained by
multiplying the elements of a row by the corresponding elements of a column, and
adding, is the product specified. As you recall, this product was motivated by
considering parts — models applications and by considering linear transformations.

Although it was not so indicated in Chapter 1, the result obtained by
multiplying corresponding entries in two column matrices of the same order, and
adding the products, does have significance. This product has various names,
the commonest being inner product, dot product, and scalar product. The inner

. product is a powerful operation that is very useful when considering perpendicu—
larity (or orthogonality) and certain metrical questions. It is very important
to speak of the "inmer product" and not permif confusion to arise through A
slipshod use of the eingle word 'product.”

The most important fact concerning the inner product, about whicﬁ students

must be ever mindful, is that the inner product is a number, not a matrix or
[pages 152-157]
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a vectér. (In those texts where the multiplication of a matrix by a real

number is called scalar multiplication, the inner product is usually called the
scalar product.) Since the inner product is a number, it should not be enclosed
in brackets as vectors or matrices usually are. Also, if the inner product were

not a number, then such statements as

VeW=1||VIIl {IWl| cos ©

would be invalid.

In the present text, the inner product is introduced easily through con—
sideration of certain geometric relationships. The basis of these relationships
is the law of cosines. Tﬁe form in which the law of cosines is stated in the

text may be less familiar than

a2 = b2 + c2 — 2bc cos A,

which is the form usually found in trigonometry,

After the operation has been introduced through geometric considerations,
the algebraic properties of the inner product are developed. Although the
discussion in this chapter is limited to vectors of order two, vectors of higher
order are said to be orthogonal if and only if their inner product equals zero.

The idea is extremely important and can be developed at great length.

Exercises 4~5

1. (a) f% . (e) C, perpendicular.
1
b) — - . £) O, orthogonal,
(b) 72 (£) _ g
(¢) -1, parallel, (g) %% .

(d) 0, orthogonal. (h) 0, orthogonal.

2. v = [u , vl = vV v,
v

152
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1
N
Ve E1 . u
VI \/—2""5
. u® + v
\ direction cosines of V.
VeecE
- v
AN wl + vl
J

3. (a) Ve know (Theorem 4~5) that
VeWs=I[IVII |IWlI cos 6.
Congequently, the equation
VeWs=«+ [|VII |IWI
is equivalent to the condition that
cos 8 = + 1,

which implies that © = 0 (cos.©.= + 1), or else © = 5 (cos & = — 1),

(b) The inequality Icos @61 <1, together with Theorem 4~5, implies
v ew? < uvi? .

If we write this result in terms of the entries of V and W, we get

(ac +bd)? < (a® + b2)(c? + a2y,

where

this simplifies to

0 < (ad - bc)2.
[page 158)
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5

(c) The present inequality is obtained from (b) by taking square roots.
The root of the right—hand member is not negative, though that of the left—
hand member might be. .

This follows from Theorem 4-5.
We show first that if Ve W=0, then V and W are orthogonal.

Sincé
VIl 114l cos 8 = 0,

then either

(a) f1Ivil =0,
(b) 1wl =0,
(c) cos 6 = 0.

If (a) or (b), then either V or W is the zero vector, which is orthogonal
to any vector. If (c), then O = 90°, vwhich means V and W are perpendicu—
lar (or orthogonal). .

We show next that if V and W are orthogonal then Ve W= 0,
First case: If V or W is the zero vector, ||VIl |IIWIl cos 8 = 0.

Second case: 1If neither V nor W 1is the zero vector, then if they are

orthogonal, 6 = 90°, whence co8 6 = 0, which means

FIVIL 11Wl) cos © = 0.
(a) ~ 20.
(b) + 2.
(c) Nonparallel., (Another correct answer would bé: "Equal in length.')
(d) -~ 72. “
(e) - 3.
(£) - 3.

(a) VeW=WelV:

BE [f] - HENE

[pages 158-159]

154



146
(b (xV) @ W= x(V e W;

CB - Ll -+ (B - )

[12] . [-i] = 4(13),
| ~s2 = -52.

(¢c) Ve (W+U)=VeW+VeU:

(- D - L -
o] e

(d) Vev>O0:

[+ [3] oo
e[ [ e [

(3) VeW=WeV:
. 1
o} e 2 (o}
HEHERHERHE
ce + df = ec + £d,

ce + df = ce + df.
(xV) o W= x{VeW:

Gl - - (2 i)

[page 159]
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i

r(ce + df),

=] - 5]

rce + rdf = rce + rdf.

L}

Ve (W+U) VeW+ Ve U

G (LD - B - ]
() -

(ce + ca) + (df + db) = ce + df + ca + db.

N VeV>0:

(b) Vew=vw=wvawev..

0

(rV) o W= (rV)tw = rvtw =r(Ve W.

Ve W+ =ViW+U) =viwu+viu=vew+vV=u.

i

Vev=vv>o0

if VeV=0=V"V and V= [g].

8. (V+W) e (V+W = 1|IV+ WII2 by Coroilary 4—5—-1;

(VHW o (V+W =VeV+2VeW+WewWws LIVIIZ +2Vew+ LW

by Corollary 4—5-1 and Theorem 4—6c.

9. (a8) Ve W==~6+6=0, ToW=24—24=0,
Ve T=—4~-16=~20=+ 1IVIl |ITI| =—Y5 /80 =- 20,

(b) VeW=—-6+6=0, ToeW=s—42+42 =0,

VerT=28+63=91=+IIVI| IITII =+ 13 /637 = + 91,
No, T and W are not orthogoﬁal. ..'. e
[page 159]
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10. Let

Since V and T are parallel,

by Exercise 4—3—4. Let

Now
VewWno;
hence
au +bv = 0, WeTs= rua + rvb = r(au + bv) = 0;

therefore W e T = 0, and the vectors are orthogonal.

1I. since -

[ﬁti] = —-rtg + str = 0

for all r, s, t, the vectors are orthogonal.

ve [2] e e [2]

vhere a, b, u, v € R. Since V and W are orthogonal,

12, Let

Ve W= au + bv = O,

au = — bv.

If u $ 0, then 157

[page 160]
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'Now

Let

Hence

- -2 0] -3

On the other hand, if u =0, then v#0 since V#0, so

whence again

with

(a) 1If

then Ve W=0.

Let

149
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go that
a+c a—c'
Now ~

et +b+di-(@a-c)-m-a?=o,

4ac + 4bd = 0,
ac + bd = O,

Since Vo Wmac + bd, we have Ve W=0.

(by If Vew=0, then LIV +wllZ— 11v=ul®=o.
Since Ve W= 0, ac +bd =0,
Hence (a +c)2 + (b + d)2 - (a — c)2 - (b — d)2-= 0.

14. (a2 + b2y (c? + d%) - (ac + bd)?

v a2 4 a2d? + b2 + b2d? - a2c? — b2d? — 2achd = a’d® + b%c? ~ Zachd

= (ad — bc)2.

15. We show first that if (V+W) e (V+W) =VeV+We W, then Ve W=0.

Let V= {:‘, W= [ﬂ
Since (V+W) e (V+W =VeV+WeW wehave

(a+c)2<+(b+d)2=32+b2+c2+d2,

2ac + 2bd = 0,

ac + bd=0;_"hence VeWs=o.

We show next that if Ve W= 0, then (V+FHWN e (V+W)=VeV+We W,
' Since Ve W=0, we have ac + bd = 0, and 2ac + 2bd = 0.

Therefore (a + c)2 + (b + d)2 = az + b2 + c2 + d2, and

159
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(V+HW e (V+UW) =aVeV+tHWe W

1 . Now

) et
[=)8
r
]
T
<
n“
—
o
(S
=
0
—
[ " ¢]

hence

Therefore,
(WV+tW) e (VW =VeV—-—HWeWl.

17. Let V= [il . We [3] ;3 then

VI = 82 + b2 ’
LWl = C2 + d2 ’
waun =V arolr e ral,
= o/ a% +2ac +c? 4+ b2 4 2bd +d .
Now, 1if ée know that A ? 0, B>0 (as we do when A = IiV + Wi,

B = IIVII + 11Wl1), then A < B if and only if A2 < Bz. Consequently,

we may compare the squgres
1V + wII2
and
Vi + w2,

. Doing so, we get

160
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a2 + 2ac + c2 + b2 + 2bd + d2 < a2 + b2 + 2 a2 + b2 ‘\//c2 + d2 + c2 +d.

This is equivalent to

2ac+2bd_<_2\/a2+b2 Ve,

or

ac + bd < a2 + bz x/gz + d2 .

We would now like to repeat our device of ""squaring both sides.”
Unfortunately, we can no longer be sure whether ac + bd 1is positive,
negative, or zero. Hence we cannot get an equivalent inequality. But
actually it is only the ''backward” implication that we care about.
Fortunately, we do know that for C >0,

implies D < C. This is all we need; let °

C = a2 + b2 c2 + d2
and
D = ac + bd.
Then
02 ji(?
bgcomes

azc2 + 2acbd + bzdz < azc2 + azd2 + b2c2 + b2d2.

Is this true? Well, it is equivalent to

2acbd < a2d? + b%c?,
[page 160)
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which, in turn, is equivalent to

0< azd2 ~ 2acdb + bzcz;

or
2
0 < (ad ~ be) .

This last inequality must be true.

Now, trace the implication backward; since
2
0 < (ad = be)
is true, the equivalent statement

azc2 + 2acbd + b2d2 < a2c2 + azd2 + b2c2 + b2d2

must be true. Consequently,

ac + bd < ‘\//a2 + b2 ﬂ//cz + d2

must also be true.
But this last statement is equivalent to the desired result,
(The logic involved in this chain of implications is probably more

confusing than the actual algebraic manipulations.)

4~6. An Area and a Determinant

The idea of a déterminant is reintroduced in this section, though the
original identification of a determinant is given in Chapter 2, If Chapter 2
has been omitted, the impact of the present section is not diminished if the

determinant is simply defined as the value ad — bc; that is,
5(D) = ad — bc, . where D = [: :] .

[pages 160-165)
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The idea contained in this section is particularly important because it inter—
relates the geometrical and algebraic aspects of a vector and also interrelates

vectors and matrices.

Exercises 4—b6

1. (a) 5 5.

by 128l _ 5

2

) 1—22— 61 _ 4
2. (a) 5, () o, (c) 2, - (@) 2.5, (e) 2.
3. (a) 3969 < 4225, 17.89 < 18;

(b) 100< 100, 3/5 < 3/5;

(¢) 100 <- 100, /5 < 3/5.

4~7. Vector Spaces and Subspaces

In the last section of Chapter 2, we defined an algebra as a system having
both the properties of a ring and of a vector space. In this section, we
finally define a vector space precisely. The addition of this new concept is
not going to alter any intuitive notions about an algebra that the class may
possess. Rather it will provide for more abstract systems the criteria by which
we can judge vwhether or not the systems are algebraic.

Briefly, a vector space is a type of mathematical system. The elements of
the system are generally what we recognize as vectofs in the present test,>but
they do not need to be.  The definition is broad enough to encompass systems in
which the elements might be linear and constant polynomials as one example,
polynomials of degree two or less for a second example. It is well worth

demonstrating this as a class exercise.

163
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Exercises 4~7

@ [‘f] ”[i] +b[§]’

where a = ~ 5, b =.2,

(Notice that we cannot use orthogonality here, since [i] and
[g] are not orthogonal. We may, instead, use the linear equations:
28 +4b=~2, a+3b=1.)

The basis

y
2 41 4 4
?thors [1} and [3] : ] [3]

. The vector [—2]: —— % X

_ 1
The representation of [ %] as a linear combination of [i]
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w |

2

1

] +b[g], where a=
£
2
i
- ~2
Vs
-~
-
-
P
y
}

[page 173}
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o [ soli] ol p

- —+ —+ + —+ +— > X
0
0
-3 . [_25 2 11 |4
o 3] D[] 2
lly
!
//
s
_- 7 |3
-
-
-
-~
//
//
3 4
4 -
- r A
3

[page 173)
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2 2
2. Notice that [_1] and [4]

are orthogonal, We may, if e wish, find

a and b by using the imner product.

w [ ==l

which we .can abbreviate

Now,

Vel

.

aV + bW.

vV'e (aV + bW)

ae (VoeV) +b(VewW

= 5a + 0Ob.
By computing, we find V e Z = — 5, Hence, we have
5a =—5
or
a=—1, )
Similarly,
We?Z=We (avV + bW)
aa(WeV) +b(We W
= O0a + 20 b.
Now, W e Z = 0. Consequently, we have
20b =0
or
b= 0.
[page 173]
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(Actually, it is possible to obtain a = — 1, b =0 by iunspection
in this particular problem, but we shall not pursue this point.)
The representation of 2 as a linear combination of V and W is,

consequently,

or, simply,
4] oo 2]
o -+ o)
a(VeV)=Vez, Sa=é4, a= %}.
b(H e W) =We é, 20b =—6, b= _3 .

10

So

@ 3] --3 [3] +3

(f) The method we have used in parts (a)-(e) is certainly working smoothly
enough — the only computation each time is to determine the two inner
products V e Z and W e 2, since we already know that Ve V=5 .and
We W= 20 (and, of course, V e W= 0, without which this method would

not work so well).

[page 173)
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(In Exercise 1, (a)~(i), we used a more straightforward but also more
tedious method, by solving simultaneous equations. Our present "inner
product’” method i8 much more efficient, and can be done by inspection.)
Now that we have solved parts (d) and (e), we can introduce another
method. This third method is really quite obvious, and, like the second
method, it can be done by inspection. It will, however, require a few

lines of explanation:

o ' 1
¢If we want to express [g] as a linear combination of [éJ' and

[0] » the coordinates a and b can be determined by inspection

HES BRI

whence, immediately, a =4 and b = 2.

¢

Now,

and

HEHE AL

If we substitute into equation (1), we get

BREHE

and, combining terms, we have

[f{] i {" (5) + (‘%;)} [_f + {4 (%) +2(%>} [2] .

These calculations can also be done by inspection, if we observe the

patterns that are involved. After a final simplification, we have

4] -¢ 3] ~5[]
2 5 |-1 41"
[page 173]
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As a check on our numerical work, we solve this problem again, by the

ARNERNC

a(VeV)=VeZ,

“inner product' method:

o

S5a = 6,
'a=é
5 -

b(We W) =We Z,

) /20 b = 16,

bat

(g) Using the third method (i.e., using the results of parts (d) and (e)),

3 - (%09 2] - (59 [

we have

-

. (h) By inspection, a =0, b =0,

o [

i
|
w
—
(=2
Crereread
+
~»
—
- O
e

o}
—
wN

3. To prove that § = '{ ] r €R is a subspace of H, we must show

that: [page 173]
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(1) sCn

(ii) [Property (a) of Definition 4—3.] If V and W are two elements
of S, them V + W is an element of S (i.e., the set S is closed under
the operation of vector addition).

(iid) [Property (b) of Definition 4—3.] If V is an element of S, and
X 1is any real number, then xV is an element of S (i.e., the set S is
closed under the operation of multiplication by a scalar),

Here are the proofs:

(i) By the definition of H,

[2) - 5]

is an element of H. This proves part (i).

(ii) 1If Vv and W belong to S, then

v

I
/]
—ey
W N
[ —

and

for some real numbers s and t (by the definicion of 8).

Now, by vector addition,

v+w=sm +°[§]

_ l2s 2t
- [35] + 3t}

2s + 2:]

3s + 3t

2(s + t)

3(s + t) \
(s +©) [i]

[page 173]
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which belongs to S, since s + t is a real number (because the real
number system is closed under addition).

This completes the proof of part (ii).
.(iii) Let V be an element of S.

Then (by the definition of §),

o[-

If x 1is any real number, we must show that

for some real number y.

xV

is an element of S.

Now

xV

i
»
—
W N
< <
—_

[

2
<
—
w N
—
-

which does belong to S since xy is a real number (because the real

number system is closed under multiplication). This completes the proof.

This proof is virtually identical with that for Exercise 3, except that
abstract notation must be used instead of explicit computation. We shall

proceed as in Exercise 4:

(i) rW belongs to H, since H is a vector space, and is therefore

closed undgr multiplication by a scalar.

(ii) 1If VvV, U belong to S {rti ' r € R}, then V=38W and U = tW,
where s € R, t € R (by the definition of 8).

U+ V= tW+ sW

= (t + s)W

[page 173]
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by Property IIc of Theorem 4-2, p. 134 and (t + s)W belongs to S since
the real number system is closed under addition, and hence t + s is a

real number (use the definition of §).

(iii) If V€S, themn V = sW, where s € R (by the definition of S).

But, for tV, where t € R, we have

tv t(sW)

(ts)W

(by Property IIb of Theorem 4—2, p. 134 of tne text.)

Now, since the real number system is closed under multiplication, we
know that ts 1is a real number. Therefore tV is a real number times W.

Therefore, by the definition of 8§,
tV € S.

This completes the proof.
(a) Yes, it is a subspace.

(b) No, because rV, where r € R, will not necessarily be of this form.
(1f we used the set of integers as our scalars, then in that case the answer

here would be ‘''Yes.'")

(c) No, since rV, where r € R, would not necessarily be of this form.
(If we used the system of rational numbers as our scalars, the answer would
be ''Yes.")

{d) (Zul - vl) + (2u2 - v2)
= 1.(ul + u2) - (vl + v2).
Congequently, this is a subspace.

(e) YNo, this is not a subspace. If V and W belong to this set, then
the sum of the entries in V + W will be 4, instead of 2.

(f) No, since this set is not closed under addition. (For example,

[é] and tg] satisfy uv = 0, but their sum [il does not.)
175
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TO'prodé that U + W belongs to F, observe that U + W is a linear
combination of U and W. Similarly, sU is a linear combination of U
and W.

Suppose

Then we have

-2a+ 6b=3,

52—-15b =1.
Multiplying the first of these equations by =5/2 produces

which contradicts the second equation of the system, so there can be no
3 .
solution fcr a and .b. B

As a second solution to this problem, we can observe that

[Ei]
S ISR

are cpllinear. Now, if 2 = ] could be expressed as a linear combina-—

8o that

tion of V and U, we would have

N
fl

aV + bU

]

aV + (—=3b)Vv

]

(a — 3b)V,

so that Z would be collinear with V. However, [f] is not collinear
{page 173)
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10.

-2
5
combination of U and V.

If
é = al + bV,
~and
U= ¢V,
then
Z = acV + bV
= (ac + b)V,

so the result is the set of all vectors collinear with V.

Let VEeF, i.e., VeF and also V e Fz. We must show that rV € F.

Now «rV € Fl’ since F1 is a vector space.' Similarly, V,e F

and F

2°
quently, rV belongs to both F

1 2’

fore, rV belongs to F.
The proof that V + We F is quite similar.

We can replace the statement: ’

1f V and W are not collinear, then any vector 2

of H can be expressed as a linear combination

Z = aV + bW.

by the equivalent statement:

If there exists a vector Z that cannot be expressed

as a linear combination
Z = aV + bW,

then V and W are collinear.

We now prove this second statement. The vector equation
[pages 173-174]
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“with [ ] , and this contradiction implies that 2 cannot be a linear

s

Conse—

by the definition of F, there—
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is equivalent to the system of equations

a+w, b= g

V1 1 1’

o @ + v, b= Zy»

v
where the '"unknowms'' are a and b. ,

Now we are supposing that this system of equations iz imposeible, i.e.,
there are no solutions a and b. But there are no solutions a and b

if and only if the determinant of the coefficients

1%
V2 ¥
is zero. -
Now, by Theorem 4~7 (p. 163) this determinant is zero if and only if
the parallelogram determined by XI] and [:1] has zero area, i.e.,
. 2 2

if and only if V and W are collinear.

This completes the proof.

To prove the converse, we need to observe merely that every implication
in the preceding proof is in fact an equivalence, so that the two conditions

are equivalent: Each implies the other.

Suppose the statement were false. Then there would exist a vector 2 for

which there would be at least two different representations:

Z=aV+bW=a

1 1 2V + bZW’

where

[page 174] .
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12,

By subtraction,
(al - az)V + (bl - bz)W = 0,

where either a, ~a, # 0, or b1 - b2 # 0, or both.

Suppose that a, — a, # 0 (or else relabel). Then we can divide,

1
obtaining

so that V and W would be collinear.
This completes the proof.

Let

[~
N W
N
1

+y ""l +z "4 .

g€ <
i
L

|

(=

-

W

This is equivalent to the following system:

3x + 2y ~ 2z

i
[+

2x -y~ 4z = v,

- x4+ y + 5z = w,.

and this system has a unique solution; see Exercise 5(a) of Section 33

on page 118 of the text and page 87 of this Commentary. Namely, we have

1 12 10
x 7 17 17||¢
6 _13. _ 8
yp = 17 17 7 (VY|
1 5 5
z 17 17 17 ||¥

For example, if for

179
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we get

so that

€ <

s oy
\JI'—' \Jlo‘\ll._'

we take
12 10
17 17
~13 _ 8

17

2 L
17 17
3 2
2] =2 (-1
1 1

180
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Chapter 5
TRANSFORMATIONS OF THE PLANE

5~1. Functions and Geometric Transformations

A geometric point of view i8 a very valuable asset in mathematics, for
skill in geometric visualization can often lend insight and obviate much tedious
calculation. The proceés of acquiring & ''geometric point of view" — i.e., of
developing one's ability to create and use appropriate geometric models — often

requires real effort, but the mathematical "payoff" is well worth it.

Exercises 5-1

1. (a) [131 | () [391]
@ 3] o 5] - [x].
o 5. - o skl - 1.
2. (a) [(1,] @) [(1,]
(b) [8] : e) [‘13 :
() [‘3] (£) [g] | ,

3. (a) No change; this is the '"identity" mapping.
(b) Collapses the plane to a single point, namely, the origin.

(c) Expands the plane uniformly by a factor a, if a >1 (i.e., a
distortionless magnification).

If a =1, this is again the identity mapping.
If 0<a<1, this is a uniform shrinking of the entire plane.
(d) This is the same as part (c), followed by a reflection in the origin.

(e) Projects every point in the plane perpendicularly onto the y axis.

181 | g
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(f) Maps the plane onto the line y = x, by translating every point

parallel to the x  axis.
(g) A reflection in the y axis.
(h) A reflection in the x axis.

(i) Every point is moved parallel to the x axis, so that its distance
from the y axis is doubled. (You might visualize the points of the plane
as molecules in a gas. The motion corresponds to suddenly creating a

vacuum at the far left and far right, at '"x = oo" and at "x = - ®.")
(i) A uniform magnification by a factor of 3. .

(k) A "shearing" motion, in which every point moves parallel to the x

axis. Points above the x axis move to the right, and points twice as-
far from the x axis are moved twice as great a2 distance. Points below
the x axis move to theé left, and points twice as far from the x axis
are translated through twice us great a distance. We illustrate with 8

points: .

y
£® ””’-'—___—_——____--—§§~\\\*‘of' ﬂk

b —"" s _b'

hl

/\ d

e —ae! ’ a -~ Ag!
o ° ° .
—»x
d% P
' —
' © . e
g g

LAY

Oh .‘\_‘/

[page 187]
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Another way to describe this is as follows:

The line x = 0 1is transformed into the line y = x:

The line y = 0 remains invariant:

Not changed

/

[page 187]
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The square 0 <x<1, 0<y<1,

y
A
(1,1)
is transformed into a paréilélogram:
y
A
_ (1,1) (2,1)
(1,0)

[page 187)
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The square 0 <£x<1, =1<y <0,

y
4
L] M.’ x
(l»_l)
is mapped into the parallelogram:
y
4
: (1,0) . x
(-1,-1)
(1) This is another "shearing" motion. Each point moves parallel .. the
y axis. The square
[page 187)
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y
A
(1,1)
0<x<1, 0<y<1,
is mapped into the parallelogram
. y
. (1,3)
(1,2)

0,1)

T
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(m) Another shearing motion. Each point moves parallel to the x axis.

(n) Still another shearing motion. Each point moves parallel to the y

axis.

4. These are one—to—one: (a), (c), (d), (g), (h), (i), (i), (k), (1), (m), (m).
Transformation (b) carries the original 2—dimensional space into a point
(which we call a O—dimensional space); transformations (e) and (f) map the

original space into a line (a l-dimensional space).

X +1
(a) V-—> y + 4] .
y
(b) V-—> ["‘ . t e
2 I
|
& ) (3,2)
I !
|
|
'r -
|
|
®
Q
P! Ay P
(c) V— {";] . oA L — ——e
— X
(—-l,—'Z)?
W= T T

[pages 187, 188]
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{

{
[ X710 ST

d) v—>

Pl

|1OP' {1 =.-} f1oP!

y
A
_'_\ P
— o Horizontal projection
onto y = - X,
¥ X
1
Qe Q
y==—x

188
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. X
(£) V- [Zx]
y
4 y = 2x
Since we know that thes
]
P X coordinate is not changed,
l we have
lQ ¢P v—>[]

Now, we know the image P' (or Q') lies on the line y = 2x.

" Hence, the second entry in the vector must be 2x, and we have

vV — [zx].
x Line thru P with slope 2
6 Y /

' y=x

/

[page 188]
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Let P have coordinates (pl, pz). Then the line through P with

slope 2 1is
Y"‘P2=2(x—Pl)~

This line jintersects the line y = x at the point (x,y) found by solving
the system

y—pz =2(x—Pl),

y = X.
An equivalent system,

X—P2 = z(x—pl)v

y =%

can be solved to get

so the coordinates of P' are

Zp) ~ P

Zpl - Pz
i.e., the vector transformation can be written

Py Zp) T Py

p 2p, —p
2 1 2

or, in the x, y notation,

[page 188)
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7. (a) This is merely matrix multiplication:

@ [l - B

(c) This is the subspace of vectors collinear with [3] .

e [ L
@ LB - L
@[3kl - 1
RN IHERtE

9. (a) First method:

EEIAREEE

Second method (using linearity):

L - 1

and multiplication by 2 yields

(b) First method:

HHIHENE
4 3 4 32| °
[pages 188, 189]
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(c)

(d)

(e)

Second method (using linearity):

EERRRE
[22] * [1‘{] = [

BHH

Second method (using linearity):

0 - L O
ERERE

First method:

EHIH

Second method (using linearity):

[ slfe] - e

- First method:

I

3
3

|-

13
320 °

M

4l

- 4.

dl
]+ 18] - 3]

Second method (using linearity):

[page 189])
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(f) First method:

HHIHE

‘Second method (using linearity):
1 o2f 5] _ {13 1 2{f{o -2
4 3||a 32| (4 3]|-1] T |-3
13 -2 11
3]+ 3] - (5]
10. @ [1 1] [s] _ |6
-1 1 1 4|
1 1 1 -1
EHIH N
Now, dividing by ﬁ, we get

6 4
(5,‘1)'% (:,'—2-—'! './_2—‘-") ’

-1
-1, -3) —> <:/-§—'— » —
The distance from (5, 1) to (1, —=2) 1is

42 + 3% = s,

- 6 =4 -1 =3
The distance from (——- , -———) to <— -—-> is
2 7.7 Vo)

[page 189)
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-1 -3 -
Q' : ("— y = ) o Q:(l,—Z)
'/E '/.2- \0 ot <_6__ i

Actually, the transformation is a clockwise rotation of the plane
through an angle of 45°;

-3 el ..é.. :‘i)
1t ) 2 2
51

[page 189]
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' Dividing by /E, we find

: ]
8
] 8
V2 , ,
—> L2 ’ P—> P',
10 oy
[ ] 2
] 1
6 ——
V2
5 B 111 * Q —> Q' .
. /2
y
A
P: (-2,10)
8 _1_2_>
2 N2
— - > X
Q: (6,~5)
Qs ( Lo
. ./E ’ ﬁ

[page 189]
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“ St
|

Dividing by v2, we get

a.‘ na+b1
R
SETTIN
° Bz
C'l c+dw
Tz
™ l=+al -
4 [ﬁ

Now, the distance from (a, b) to (c, d) 1is

‘\/(a-c)2+(b—d)2,

and the distance from (a./_;_' b , —aE b) to (C +d N =+t d> is

/\/(a+b—c—d)2+ib-a+c—d)2
2

,fa — o2 +2(a =) (b—d) + (b= d)+ (b~ O+ 2(b-d)(c~a) + (a=c)*
2.

u\/a—c)z+(b—d)2+(b—-d)2+(a~—g)_'2_
2

= '\/(a-—c)2 +. (b—d)z.

»
Since the distance between any two points is preserved, the trans—

~ formation must be a rigid motion. As a matter of fact, it is actually

a rotation clockwise through an angle of 450, as we remarked earlier, but

[page 189)
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it may not be easy just yet to see why this is true. Your brightest

students may well be able to prove this fact even at this stage of the game,

.52, /Matrix Transformations

For this section, the student text is largely self—explanatory. Such
"additional remarks as we wish to present are intermingled with the solutions to

the problems, since the problems themselves give meaning to the remarks.

Exercises 5-2

IR

1. (a) (1) [1 2][1]
4 3|2

(11) y = 2x.

() 1 2|f-3 -7
4 3l3] - (]

(i1) y = 2 x.

@ o [l - [

6 3
(i) y = zX=7X.

@ (1) [1 sz] . [3]
4 3] |11 7|’

(i) vy = = x.
(e) (i) [1' 2][3] _ [3] ,
‘ 4 3|10 12>
(ii) y = 4x,

[pages 159-1931
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@ o [pff - L

‘(11) y = 6x.

2. This problem uses the linearity property
T(aV + bW) = aTV + bTW,

and the fact that V and W, if not collinear, form a basis H. Hence,

any vectoF Z can be written as a linear combination
Z = 8V + tW.
1f, now, we know TV and TW, we can compute TZ as
TZ = T(8V + tW)
= gTV + tTW.
(a) Evidently, we want to use [i] and [;] (which are not COllinearl)>

as a basis. The first problem, then, is to find a2 and b to give us a

representation of [gl,ukgs a linear combination of [i] and [;] y 1.e.,

HERHERHE

In this case, a=1, b=1.

+ b

Consequently,

SHHERHERHE 198

[page 193]
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(c) First, we represent '{_i] as a linear combination of the basis
vectors [i] and [;] . (The idea, »f course, is that we know the fate

of [2] and [1] under the transformation T.)

HERHESHE

Thus,

HEH ”f’m'

Now, because of the linearity of the transformation T, we know
that

199

[page 193]
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Alternative method (using the ‘answer to part (a)):

(8] =efe] el - )+ ) - (21

2] 1. (2] L4 ]2
T[s] §T[1, +§T[2l

1[s] ,afs

3[1] *3 5]
5 16

= 3 + 3 = 7

1 20 2
3 3

Alternative solution (using thks answer to part (e)):

]l ] - B HERt

3. (a) [_2 1] evidently maps F1 onto itself, To find the fate of F2,

we can proceed as follows:

Any vector of F2 is of the form

4]

or, equivalently,

t [;] , Wwhere t € R.

Now,
-2 1] 01
EIHERHE
[pages 193, 194]

201



194 |
so that the image of F, is merely the point (0, 0). Mathematicians

sometimes express this by saying that F2 has been annihilated by the
-2 1
-2 1|° .
Next question: What is the fate of F3? Any vector in F
written

transformation

5 oo be

or, equivalently,
1 ' '
el 5l where ¢t € R.

Now,
and hence
t| _ L | -1
-2,

¢ Consequently, the image of Fy is the one~dimensional vector space

Geometrically, l:? 1] maps

AN

[pages 193, 19%]
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into

Finally, what is the image of H under the transformation [:g i] ?

Any vector of H can be written

at

X € R, y € R, and, consequently

2 - [z

Geometricaily, the entire two—dimensional space K 1is mapped onto

= (=2x + y) [i] .

the one—dimensional space
r [i] ’ r € R,

as shown at the top of page 196 of this Commentary .
[pages 193, 19%]
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>

Imege of H

Remark: Any students seriously interested in this ;opic might find
it worthwhile to use the vectors [; ] and [i] as basis ‘bectors for
H. The result is very suggestive. Can you see a general method that
emerges from this train of thought? |
(b) Clearly,‘the matrix B maps F1 into itself.

What about Fz? Again, any vector of F, 1is of the form <

1], een

. Consequently,

EHIHEIHERBE

and F, is mapped into itself! (We say that F,

under the transformation induced by matrix B;)v
we have vectors of the form
204
Ipages 193, 194)]

For F3,

'is an invariant subspace -
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and we see that

o 3|3 - Tl -]

Hence, the image of F3 is o s

e e

which forms a l—dimensional vector space, namely

=N W S

+
- — —— —— —

What does matrix B do to H itself? Since &(B) # 0, B maps H
onto itself, (We leave it to you to decide how.)

(c) and (d): Using the matrix AB 1is equivalent to mapping the space
first with B alone, and then mapping the result with A alcne.

205
[pagos 193, 194)
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Actually, it is easier to answer question (d) firs::

(d) [Done first for convenience; part {(c) follows] :

¢

Usiag the matrix BA is equivalent to mapping the space first using
A alone, and then taking this result and mapping it using B &lone.

This is a consequence of the associative law for matrix multiplication:
(BA)V = B{(AV).

The left—hand side, of course, correv~-nds to using the matrix BA.

The right—hand side says that we take the vector V and transform it
by using matrix A. 'fu2 result of this will be AV. We now take this

result, and transform it using matrix B:

AV —> BAV.

The subspace Fl, of course, is mapped onto itself.

How about F,? We know that A maps F, onto (0, 0), i.e., onto
Fl. (We hgve now found (AV).) What happens when we now apply B?
Answer: B maps (0, 0) (or Fl) onto itself.

Consequently, BA maps F2 onto Fl’ i.e., into the single point
(0, 0).

How about F3? First, we know that A maps F, onto the line y = x
(or, if you prefer, oyto the l—dimensional vector space r [i , Wwhere

r € R). Now, what does B do to [l] ?

310 - 1]

80 B leaves [i] , and hence every vector in the space r [i] s - un—
changed. Thus, BA maps F3 in precisely the same way that A alone did.

Finally, what happens to F4 (i.e., to H itself)? Let us follow
our earlier suggestion, and express every vector of H as a linear

combination of the basis vectors

2] = 3]
[pages 193, 194)
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(We clearly can do this, since these two vectors are not collinear.) Now,

if V 4is any vector in 1, then

Applying the matrix A to V, we have

SRHERH)
SHEH |
2]

so that H maps onto the line y = x. This line, however, is unaffected

=0 +b

by the application of matrix B. Consequently, BA maps H in precisely
the same way that A alone did.

(c) [For convenience, the solution to part (d) precedes this solution
of part (c).]

Evidently, AB maps F, into itself.

1

What about FZ? We know that B maps F2 into itself (each vector
being multiplied by 2). Then, A maps this result [as we saw in part
(a)] into the single point (0, O). Consequently, AB maps F, into
0, 0).

How about F3 7 B maps F3 into the vector space

r [2] , r € R,

and then A maps r [2] as follows: S

(pages 193, 194)

1207



200

Consequently, the image of F3 under the combined transformation

induced by AB is the one-dimensional vector space v
e e

Finally, how about H itself? We know that B maps H onto itself,

(i.e., the line y = s),.

and A then maps H onto the line y = x. Consequently, the combined

transformation maps H cnto the line y = x.

4, (ay T+ 1! . [o]
. 1| °?
Y . .
1 1 ol _ 1
0 1| 1|
0 1;|-1 -1
1 1 |o| _ [o
01 0 0]’
3
L 1| ip| o |P*+4a
0 1] |q q l )
(b) Here we are given the image vector 2, su.* chat
AV = 2.
Zvidently, this situation calls for A—l:
a7 av = Al og,
we=atz,
vealy

So, w= compute A"

S L
208
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Now we are ready for business:

(a)

(b)

(o
-
—
——
- - - -

}

-~

— —

o n [ ]
U
a
ey
2}
L
%]
—_—

[ o

o p———— — —
ol o
- -

D
)
-~
PSS

Not linear. We give a counter—example:

[ LR

But every linear transformation takes {8] into itself!

N ¢ linesxr. We give @ counter—example:

HEAHE

i
2 ?i should go (by linearity) into 2 i .

But dozs {t?

Answer

2] = 2]

So the :jamst.-nation is not linear.

(c)
(d)
(e)
(£)

L:sear.
Liear. .
Not linear.

Not imeuz. We give a coﬁnter—example:

[page 13'*9 9
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2 [Z] should, by linearity, transform into [Zg] .

But does it?

So the transformation is not linear.

6. If A maps the entire plane into (0, 0), then it must map
into (0, 0). Consequently, if we let
we know that

Hence a =0 and c¢ = 0,

To show that b and d must be O, consider in a similar way the

vector {2] B

7. 1f A maps every vector into itself, then it must map

H

onto itself.

Consequently, we know that

[page 19%)
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so that a=1, ¢ =0.

To determine b and d, consider in a similar way the vector

i

The line y = 0 can be represented as the l—dimensional vector space

HEEERE
BHIBEEE

Hence the line y = 0 is mapped onto itself. Every vector is doubled;

Now,

hence,

is the only vector mapped onto itself.

(a) Tollows from direct calculation,

M

We know that A must map [(1)] onto the x axis:

(b) Let A be the matrix

so that c¢ = 0.

[pages 194, 195]
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Similarly, A maps '[2] onto the =x axis:
a b 0 - b = 1
c d 1 d 0]°?

Hence A -must be of the form

[5 5]

Does this perform as desired? Yes it does, since

EEREE

.so A maps H onto:the =x axis.

so that d = 0.

10. Proceed similarly (compare Exercise 9). The result is

‘ el

I1. (a) If AV =2V for all V, then this must hold for each particular
instance, and so we look for some instanc. 3 that will yield simple
computations.

One such "special case" is this: Let V be

Then we have
a b 1 - lal o 2
c d 0 c ol
'Conse4uently, a=2, and ¢ = 0.
0

[page 195]
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we find that b =0, d= 2.

- (b) Proceed as in part (a). The result is

a 0
0 af-
12. Note that we cannot une A_‘1 ii: this proof since it .. untirely possible

that 8(A) = 0.

Instead, we proceed as follows: Let
0
u,v —> [O] .

Then

0
ry —> r[ O]

L]
—
(@R ]
e
.

Further,

u+v_>[g] .

This completes the proof.

13. Here is the proof:
First, if f is linear, then

£(xv + sU) = £(xV) + £(sU) !

= rf(V) + sf(U),

so the equation is a necessary condition for linearity.
Conversely, if f satisfies the equation

£(xrV + sU) = rf(V) + s£(U),
then, .in particular,
f(A +B) = £(A) + £(B)

. [pages 195, 196)
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(by substituting r=s8 =1, A=V, B =1U); also,
£f(tV) = t£(}

(by substituting s = J, etc.).
This completes the proof,

. (In other words, this single equation is equivalent to the two com-
ditions stated in Definition 5—2 on page 190.)

Fre

5-3.  Linear Transformations

The content of Section 5-3 is very important and useful. We note ﬁere_ :'
just one aspect of it, namely: It provides us with two valuable tools for:
finding matricés from transformations and vice versa. In both cases; we are :‘1 
able to replace an apparently "hard" problem by a much simpler one. R ,a

First, we can study AV for all V by studying the transforms of only
two vectors — namely, any two noncollinear vectors. (This method is used to -
study the rotation transformation on page 198.) _

Second, we can sometimes simplify a problem by regarding a transformation
as the result of a sequence of simpler transformations. (This method is used
to construct the matrix on page 199, bottom.)

We have also used both of these methods in solving some of the problems

in the preceding sections.

Exercises 53

(=

(b) [

(c) [

[N e

o

214
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l
B

(d) [-—a 07[

(e) [o 07(
0 1]

(b) q  1s represented by [
(c) We know that r carries

Consequently,

(£) [o 1] x]
0 1_ Ly
(8) [-1 0] 'x] ] _x]
0 1] | ¥ y
(h) 1 0 X : x
lo "1] LY] g [*y
(i) 2 0 -xw 2x"
{O 1] LY — [ y
(i) 3v 0 xT 3xw
I
(k) 1 1) x] x 4y
[O 1] Y] — | Y
(1) 1 o] [x <
[2 1] | Y g L2x +y]‘
(m) 1 —2} xw 'x_zy
- [O 1 Ly_ — L y ]
(n) 1 of(x x )
(a) p 1s represented by [é _2

207
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(2T -]
o o
U
—
o
U
]
—
- O
st

or

so a=0, c=1,
Similarly,

HHIH

or

[}
ey
ok
[e——
-

H

g0 b=m=~1, d=0, and the matrix is:
0 -1
1 0j-°
(d) Evidently, s takes

into

Hence,

and ] 216
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so that a=1, c =1,

Similarly, s takes

into itself, so that b =0, d =1, and the matrix must be

HHE

(e) We know Eh&ﬁ pq corresponds to "first q, then p". Now, q maps
H by horizontal projection into y = — x, after which p reflects this

line in the x axis. The combined matrix can be found as follows:

oy

N

matrix for q aléne: [g —i] .

Modifying this to include a subsequent refléction in the x axis, we get

1o 3]

(We can, of course, also obtain this from the matrix product
1 0(j0 =1 )
0 -1j|0 1] °
(D) 0 -1 1 0 - 0 1
0 1|0 -1 0 -1} °

(g) r takes [é] into [2] , after which p carries [21 into

the matrix

[ O] . The combined effect, then, is to carry [é] into [ O] .

-1 -1
217
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Similarly, r takes l?] into t_él » after which p carries

[—g] into itself. The combined effect, therefore, is to carry [2]

We know that [: 3] [él = [2] » SO right-multiplication by

0 ﬁerely reproduces the first column [a . Similarly, right—

mul tiplying by [ll mer:.y reproduces the second columnm, [3] .

Hence, the matrix for pr must be:

3l

Alternative solution: The solution for part '(g) that we have just

given is one of these ''clever' solutions that are somewhat involved to

explain, but can actually be done with extremely little computation.

The following solution is "more straightforward" (if you like it), or

"more tedious and less exciting" (if you prefer to disparage it):

8 3]0 8] - 12 )

(h) First, p carries [é] into itself, after which r carries [é]

.
A

into [2 . Hence thé combined effect is to carry [é] into >2]
2

1
0 1 R 0 .
-1 into ol * The combined effect, then, is to carry 1 into
1

ol

Similarly, p carries [?} into [_9] , after which r carries

Consequently ( cf. the solution to part (g) ), the matrix must be

2]

Alternative solution: As in part (g), you can find the result by

mpltiplying the matrices for r and p: .
[page 200)
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(j) 1If you think carefully about the geometric effect of sq, you can
get this matrix by inspection:

After q 1is applied, every point is on the line y = — x. We now
shift each point vertically through a displacement equal to the x co—
ordinate of the point, i.e., equal to the "opposite'" (cf. S§.M.S5.C., First
Course in Algebra) cf the y coordinate. This makes no change in the x
coordinate; but a number plus'its "opposite" (i.e., additive inverse) is

zero, so the new y coordinate must be zero, and the matrix is

s

(k) Let's do this the "dull, routine' way:

3]

1 0 -1

(1) By the associative law for matrix multiplication, this must be the

same as part (k).

(m) We know that the matrix for sq 1is

0 -1
o o0o]°
1f, now, we follow this by a reflection in the x axis, the x

coordinate is left unchanged, and the final matrix must be

[page 200] .
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53]

(Another way to say it is: sq maps the entire 2-dimensional space
H ‘onto:the x éxis. But following sq by p can have no further effect,
since the points on the x axis are left unchanged by a reflection in
that axis; consequently, the combined effect of sq followed by p must

be the same as the effect of sq alone.

Alternative solution: One can, of course, multiply the matrices for

s S0 3] - 18 )

(n) By the associative law for matrix multiplication, this must be the

p and for sq:

same as part (m).

(o) The geometric interpretation here can help us avoid considerable
computation.

First we apply q: This maps H onto the line y = - x, by the

o

We follow this by r, a counterclockwise rotation of 900, so that

HEEEH '

matrix

the poiats at

move (under q) to,



We next apply p, 80 these points move on to

' o] w [

Finally, we apply s, getting

(8] = [3]-

Hence, the combination (sp) (rq) takes

3] = [

into

(o] = 3],

respectively. Using our rule about the reproduction of columns when we

right-multiply by é or 2 » we can immediately write the matrix

for (sp) (rq) as

3. Matrix representing 15° counter—clockwise rotation: either fg or gf.
Note: 1In this case the matrices must commute, as we see at once from their

geometric meanings without the need to do any computation whatsoever!
4. (a) If T is a linear transformation, then
T0 = (V-
= TV — TV

= 0.

(b) Let S be a subspace of H, and let T be a linear transformation.

Let S' be the image of S wunder the transformation T. We must show
[page 200]
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s=gt §' 1is closed under vector addition and under multiplication by a
Zmal=r.

First, closure under vector addition: Ler V' and W' belong to
=, Then, by the definition of S', there extat two vectors V and W

.n 7§, such that

w=V,
W= W.
lipw, since S 1s a subspace, we know that + W belongs to S.

hersZore, by the definition of S', T(V + W) rzolngs to ='.

iowever,
T(V~-W =TV +TW=V +W,

which shows that the sum V' + W' belongs to S', and so S' is closed
under vector addition.

The proof of closure under multiplication by a scalar is gimilar. -

5. We must prove that

(f + g)(av + bW)

fl

a(f + g)(V) + b(f + g)(W).
By the definition of (f + g),

(£ + g)(aV + bW)

i

f(av + bW) + g(aV + bW)

i

af(V) + bE(W) + ag(V) + bg(W),

the second equality holding because of the linearity of £ and g.

Continuing, we have

(f + g)(aV + bW) = af(V) + bE(W) + ag(V) + bg(W)

fl

af(v) + ag(V) + bE(W) + bg(W)

a [f(v) + g(v)] +b [f(W) + g(w)]
a(f + g)(V) + b(f + g)(W).
222
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The zwasc::: for tomse last three steps are, respectively, the commrtative
and gesoev -V laws for real mumbers, the distributive law for reai

oumbere | i..i ghe Je: aition of (T + g).

6. The pr--7 1 imildz to that in Exercise 5, abov<
7. We prow: pht Lo -z represented by AB. This .oplies that fg s inear.
Proo: "mat U is represented by AB:

Let .: an¢ £ e, respectively,

I L

are carried .-l

respectively, by m=ztrix B (i.e., by transformation g). ‘

If we now apply transformation £ (i.e., matrix A), the vectors

e~| h
[kﬁ and {m]

will be carrcied Imtc

and
a b h = | ah + bm:
c djfmj ch dmj’

[pages 200, 201}
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respectively.

<oy

Combining the: two transformations, we see thr: _'}] ar [?]

are carried by £fg into

ah + bm

'ae+bk and i
ch + dm *’

ce + dk

—espectively,
Using our rule about the reproduction of colums: wnen we right—

multiply by 0 or by 2 s We can write a matizi; that will take

[é] and [?1 into

ae + bk and ah + bm
ce + dk ch +dm|”’
respectively,
This matrix must be
c ae + bk ah + bm
ce + dk ch + dm

By multiplying AB, we find that
AB = C.

Now, the matrix C maps [é] and [2\ correctly. However, we
cannot infe- from this that C maps every vector correctly (i.e., the
same way that AB does), since we do not yet know that fg is linear.

To complete the proof, observe that fg is linear if:and only if
the matrix C (which we know must induce a linear transfwsmation, since
every matrix does; cf. Theorem 5-5, p. 209) maps every vector the-'same way
that fg does, i.e., for all vectors V,

A(BV) = CV,

p3

But this must be true, in consequence of the fact that (4B) = C, and

that matrix multiplication is associative:

. 224
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rAkg
A = (AROYV =Y.
This completes the prc- for f£g. The proof for gf is sizzlar, or
t=zn be obrained from this pruif by -rzizbeling.

8. {1 We must prove that, fo- 311 vectors ¥ belonging to 1. == "have
f(g + 2a)V = (Iz + fh)V, (1)
T

acd product of transformations as follows.
Bv definijition,

%

establish the validity of equaticm (1), we use the definitionz of sum

i~

(fg + fh)V = (fg)V—+ (Eh)V
(2)
= f(gV) + £(hv).
Also, by definition,
£(g + h)V = f[gv+hv] )

Because £ 1is a linear transformation, we have
£ [gv + hv] = £(gV) + £(hV).

Comparison with equation (2) now establishes the wvalidity of equation
(1). This completes the proof.

(b) We must prove that, for all vector= V belonging to H,
];(f + g)h] V = {Zb + gh)V.
From the definitfmm of the sum andi product of trangsformations, we have
(= + gh)V = (fh)T— igh)v= f£(hv) + g{ov) = (£ +‘g) (hv) = [(tf + g)] hv.

Tiris: completes the proxzz.

(c) In-emach part of Exercize 8, the immortant thing is to remsmber that we:

ar=working with linear transformations,. :not with matrices. The formulae

[page 20%]
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loci similar, but bewa (4ifferent meanings. Thus, for example, if A, B,
ané V are matrices, to

A(BV) = (AB)V

#x an instance of the mmwociative law for matrix multiplication.
On the other handc f f and g are linear transformations, the

mezySement
f(gV) = (£g)V

is the definition of tm=s product of two linear transformations.

To prove part (c) ‘we mpst show that, for all vectors V of H,
£ [(ag)v] = a(£g)V.
‘But this is easy:

alfg)V = @D(EN) = a [£en)] = £ [aeW] = £ [ap)v].

4. @Gne—~to—=xe Linear Transformations

The text-mmkes lit=®= use of the concept of dimension of a vector space.
Because this “:5 a ratiez sophisticated (and deliberately open—ended) course,
we have not m==itateq & introduce this concept, even. though briefly.

In particdlar, we um2 It to solve Exercises 6 zmmd 7, though altemétive
prxnfs can be given.

"Dimension" is-an Imwtuitively simple idea that: often lends itseLf to easily
wistalized groofs. .

‘Here art some fradamerr=¢l theorems and definitions:

Theorem 1 oz Dimension. Let K be a vector space; let Ul’ UZ’”"Un

‘pexrlinearty ingepemdent m=== of vectors with the property that every vector in

'K, xman be. eppzessed.in the Somrm

aT:-“::+a 2

1- U

g Uyt e a2 U,

[pages 201~-204])
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for some set =f real numbers a”az,...,an; and let Vl,Vz,...,Vm be another
linearly independent set of veczuxrs, again wiz=h the property that every vector
in K can be expressed as a linear combination ’

b, V. +

1V top it v, Vs

for real numbers bl’bz’ ...ame Zn M= N,

Proof. 7ne can prove -cthir vather easily by mupposing that m < n, ex—
pressing each of the 'Ui in terms of the Vi, and showing tnat this contradicts
the Iinear independence of the I,. Therefore we have m > n, and similarly

n > m. Therefore, n = m.

{To mnake matters easy, if you:present this proof in class, you might try
the case n = 3, m = 2, which wou can easily write out explicitly in complete

detail.)

Definition of Dimensizm. Tk= number n =F Theorem 1 above will be called

the dimension of K.

Theorem Z on DimensZon. Lezr T be a linear transformation that maps the

vector space K 1into th= vector space L. Then the dimension of the range is

less than or equal Zo thwe dimensiun of the domain.

Propf. The proof i: atr-aightforward, by assuming the contrary and using

‘the properties of T thst

+ - +a U)
n n

z = T + T .o -
‘I"U:‘_ aZTU2+ +anTUn

and T 0= 0.

Exercises 54

1. (a) Is are~to—one.
(b) 1Is o=t one—to—one.

(c) Is one—to—om=. 2 2';

fmages 201-203]
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(d) Is one-to—one,
(e) 1Is not one—to—ome.
(f) Is not one—to—one.
(g) 1Is one—to—ome.
(h) 1Is one—to—one.
(i) 1Is one—to—one.
(j) 1Is one—to—on=.
(k) 1Is one—to—one.
(1) 1Is one—to—on=e.
(m) Is one—to—cme=.
(n) Is one—tc—mm=.

2, Suppose T is mot ame—to—one. Then zhere exist two wectors V and W,

not equal, such thaz
TV=T W. Q)
~ Denote TV by che lett=r Z. We can rewrsre. (1) =S

TV =12,
T = .

Now, T(V—-W)-=7Z—2=23; buwx V—V¥ iswmos 0. Hence, if T is

not one—to—one, the i=rnel does mot cmsist solely ¥ the zero vector, -~~~

These statement= are somewhas complicated, and Sxgis may be a good place

to write out our logic symbolically: :

Let I be tHir statement:
T is ome—fo—ome.
Then ~I is the. statement:.

T 1is mot xe=—to—one.

[page 28%]
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Let K be the statement:

The kernel consists only of the zero vector. Then ~K is the state~

ment:
The kernel does not consist solely of the zero vector.

There are four possible forms, representing actually two statements:
first,

I > K and its equivalent ~K >~ 1;

second,

K ’DI and its equivalent ~1I _:>~K.

We have already established the second of these two statements (in“m
its equivalent form ~1X >~K).

We must now prove the first statement.

Suppose that the kernel does not consist of the zero vector alone.
Then there exists a vector R such that

TR=0,

but R itself is not the zero vector.

Then T cannot be one—to—one because, for any vector V, we have
(V+R)Y=TV+TR=TV+0=TYV,

and the distinct vectors V and V + R have identical images. This
egtablishes the implication

or its equivalent,
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This completes the proof of the theorem.

(The use of symbolic logic is8 a matter of taste. 1In our experience,

it dves simplify exposition once students become accustomed to it.)
3. This proof follows easily by direct computation.

4. We must prove that
fg V= fg W
implies
V==,
Since £ 1is one—to—bne, we knéw that
£(g V) = £(g W)

implies

~

gV=gW,

and the required result now follows from the fact that g 18 one—to—one.

5. The result that the set of transformations is a group follows easily

from Exercise 4, plus the fact that matrix multiplication is associative.
-

6. Since no linear transformation can“increase dimension (i.e., the dimension
of the range is less than or equal to the dimension of the domain), if either
- £ or g decreases dimension (i.e., is not one—to—one), then fg must

decrease dimension (and hence fail to be one—to—one).

7. 1f A 1s the matrix

o 0
O ol
it evidently maps onto a point.

If A is the matrix

230
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then we know that
and

Hence, if the two columns of A constitute linearly independent

vectors, then A maps onto H. 1In this case, we know that &(A) # 0.

Hence, if 5(A) = 0, the columns of A are dependent; i.e., A

is of the form
a ka
c kel
But A of this form implies that
a kal||=x o | a(x + ky)
c kelly c(x + ky)
-=[¢].

and therefore, unless a = ¢ = 0, the range is a line.
(b) Follows by direct expansion of the matrix product.

(c). Since A is not the zero matrix, and 5(A) = 0, we know that the
‘range is a one—dimensjional vector space, i.e., a line. The kernel must
therefore itself be a one—dimensional vector space. This proves the re—

quired result,

(d) This is an important result that clarifies the situation of two
simultaneous equations in two unknowns when the determirant of the co—

efficient matrix is.zero. . ' 2 3 1

[page 205) _ |



If U does-not belong to the range of A (which
dimensional), =H=en evidently

we know to be one—

AV =1

...can have no solutions.

if, however. U does belong to the range of A,

then we must show -
" that

AV =1

if and omly if Ve (Vv + tV, 1 teR, AV) = U, AV, = 0}.

Terwt, if V belongs to this set, then, by the linearity of A, ,it
must be =rue that ' ' '

AV:= A(V1 + tVZ) = AV1 + t:AV2 =U+0=TU.
Siippose, om the other hand, that

AV = U.

Consider the vector V — Vl. Then we have

A(V-V) =AV=-AV, =U-TU=0,

zné bhence V — V1 belongs to the kernel of A. Since, however, the kernelvf_""}",
af A s one—dimensional, we have V — V1 = mV, for sowe real number m,-
and this completes the proof. ;

I= A-Jl exists, then |
AV=U
. imxriies
vaaltuy,
[page 205]




and hence V 1is uniquely determined.

‘

535—5. Characteristic -Values and Characteristic Vectors
' The notion of a fixed element for a transformation is extranrdinarily use—
~ful in mathematics, yetit.is deceptively simple.
You might begin by asking 1f somewhere on each line in the coordinate plane
.;;here is a point that has the same value for its ordinate as it has for its
" abscissa. On the line given by
y = 2x + 3, }
such a point is (-3, -~3). On the horizontal line
y = 5,
there is (5,5); and (1,1) is on the vertical limne

x= 1,

The first of the foregoing examples can be looked at as follows: 1In the

trans formation
the value x = = 3 is carried to the same value -3, That is why —3 1is called
a fixed value for the transformation.
The class will soon discover that the problem of determining the fixed values
for the transformation
x—>ax +b

18 simply the problem of zolving the equation

X = ax + b,

[pages 205~211)
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"and'will see that this is always possible if a ¥ 1. The situation-for a=1l

becomes clear from a consideration of such equations as

and
X =x + 5.
Perhaps they will want to look for fixed values in the tramsformation

X ———> ax2 + bx + c.

Exercises 5—-5

1. (a) lz -c 5 |

0 3~c

(2-c)(3—-c) =0,
c = 2,3.

For the characteristic value ¢ = 2, we have

tRGEEE

One characteristic vector is

and all others are of the form

For the characteristic rocot c = 3, we get

(pages 205-211)




which 1s equivalent to
~a + 5b = 0,

One characteristic vector is

and all others are of the form

(-3 ~ e)(2.~c) +4 = 0,

c2 +c—-2=0,

(¢ +2)(c —1) =0,

c=1, -2,

For the characteristic root ¢ = 1, we have

=R}

which is equivalent to

—ix + 4y = 0,
X+ y=0,

One characteristic vector is

. 2835

[page 211]
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and all others are of the form

K .
k| ? keR, k0.

FPor the characteristic root c¢ = — 2, we find

which is equivalent to

—x + 4y = 0,
—x + 4y = 0.

One characteristic vector is

—
-
sl
-

and all others are of the form

4k
[k], k €R, k #0.

(c - 1) =0,

c=1, .'l‘l

Here, the characteristic equation has a ''double" root. What kind of
new behavior will this entail?

We look for a characteristic vector:

[page 211)
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The vector

-

is a characteristic vector, and all other characteristic vectors are scalar
multiples of this one.

Can we not find any linearly independent characteristic vectors? The
answer in this case is 'No,'" but if we look for vectors that, instead of

being carried into

1

RN

by the matrix

u = [_i _H, '

are carried into zero by M2, we are able to find a set of basis vectors.

Thus
2 1 1 101
M= [—1 —1] [—1 —1]
_[o o
0o ol

which carries all vectors into zero.

A set of basis vectors can now be chosen in a very special way:

We construct a ''chain of length 2" by selecting any convenient vector

0
0
by Hz; for example, we might choose

[page 211]
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We now pick, for our second vector, the image of V, under M:

e [l - ] v

1f we use the vectors

MV \'{

1’ 1

as basis vectors, in that order, the matrix M will assume 'triangular

HHE

For a complete discussion of this important phenomenon, se= Bernard
Friedman, Principles and Techniques of Applied Mathemati:s, (Wil=y 1956).

form':

(d) - 2 =0
0 1-c¢ ’
c2 -ce= 0,

c=0, 1.

For ¢ = J, we have

HIHEIHE

The characteristic vectors are all scalar multiples of
1
ol *

238
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2=

e

i.e.;

—x + 2y = 0.

One characteristic vector is

13-

and all others are scalar multiples of this one.

2, This follows almost immediately. Here is the proof:

If zero is a:characteristic value, then

a b

-0 b
2 ‘ c df 0,

c d—-0

since otherwise there could be no nonzero vector

Reversing this line ofiargument, we obtain the converse result,

3. First, f is one—to—one if and only if its kernel (i.e., the set of vectors
mapped into the zero vector) consists only of the zero vector.

But the equaidon
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has a nontrivial solution if and only if the determinant &(A) = O, i.e.,-.‘:

if and only if 0 1is a characteristic root.

4. 6—c 2 _
\ 2 3-c| =%
c2 - 9c + 14 =0,
(¢c - (e —=2) =0,
cm 7, 2,

- 2]l

One characterzstic vector is

and the corresponding fixed line is

mVY, m € R.
For ¢ = 2, we have
4 2| =
2 1}ty

with the characteristic vector

and the fixed line
mW, m € R,

Finally, the inner product
(page 211]
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VeWw= (1) (2) +(=2) (1)

shows that V and W are perpendicular.

a az + a
2. | 2 11 %12 11 " %12
81 2, 1 %22 1% *
a2~ (a), +a,)A+ BT
S S R
2 ]
I S B e 11%12 T %1282

2
8)1851 T 85,8y 83813 T 8y,

_ o %11%22 T %% 0

L 0 811%22 7 #12%21 |
_ oo

|10 0}’

as desired._

The first part follows by direct calculation.

Theorem 5-11, since the transformation in ques

If A maps every line through the origin into

HHIHENH

for some r € R, and for all x,y € R.

This is equivalent to

Hence a=r, b=0, ¢c=0, d=1r, as desi

The characteristic equation for this matrix is

[pages 211, 212)
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=0
81 81812 a%2"22
?
85821 91812 T 83,
2

8y * 858 811812 T 812922

81871 T 8328y 811855 t 8y

This does not contradict

tion is not linear.

itgself, then

for all x,y € R.

red. The converse is trivial.
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21 22
i.e.,
cz—(a + a,,)c + a .a,, —a,,a,, =0
22 11 11722 12721 '

This quadratic equation for the "unknown' ¢ will have

real roots according as its discriminant
b% — dac = (a,, + 3,00 — 4 - )
- ac = (ag; + 3y (311825 ~ 21221

is positive, zero, or negative.

However, this can be expanded as

2 2
! ayy + 2a558)) *tap) < 4a)ay, +ha) 3,
= (a,, ~a, ) +4
(a5, = 2yy 332873
= (8, ~3,))° +4 =d
2311 T 222 31281 < ¢
9. |1 _ 1
J2 ¥2
11
L*/2 ¥2
10. {1 o
0 1"
11. r—c s _
s t—cl| = 0,
2
(r —c)(t=—c) —s° =0,

..................... czi._ >(r+ t)C+ rt_52= 0 .

The discriminant of this quadratic equation is

242
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b2 —bac = (r + t)2 = 4rt + 482

= r2 + ért + t2 -4t + 482

= (r ~ t:)2 + 482 >0 1if 8 # 0.

© 12, The equation

can be written
(a ~c)(e~c)~bd=0.

For the transposed matrix, the characteriséic equation is

whieh is precisely the same equation.

5-6. Rotations and Reflections

This concluding section of the chapter ties together and reviews aspects
of the present course and of the students' earlier work in Euclidean geometry,

analytic gedmetry, and trigonometry.

¢ Exercises 5—6
1. We know that the required matrix must be of the general form

sin @ cos ¢

TSR ESSSTTT R [cos @ -sin Ot]

The omly question that may lurk in your mind is whether & should be
the angle given in each part of Exercise 1, or whether (« should be the

e . 4 © [pages 212-217]
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negative of this angle. We can settle this by considering the case where

‘we rotate H through + 90°. Such a rotation carries

into

).

If we try Q = + 90°, we have the matrix

23],

and we find that

HSIHEHE

and this is, indeed, the correct choice.

(Had we tried = — 90°, we would have obtained

o

as the image of

a fact you can easily check for yourself.)

We have thus cleared up any doubt as to which direction of rotation

_corresponds to which sign for the angle Q.

...........................................

Here are the matrices M:

(a) = 180°, cos 180° = -1, sin 180° = 0, so

o ) 244

. [page 217]
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-1 0
e [329].

(1t ié directly evident that this matrix induces a rotation through

1800, since any vector is mapped into its own additive inverse, - -°

V—> =) .
(b) =45, ‘cos 45° = sin 45° =~}§, 80
1 _ 1
v |7 T
1 1
2 2

(We can clock the image of

We have

1 o_11r, L
22 )
1 Lol Tixl
2 72

which is evidently correct. How many other vectors should we check to be

sure we have a correct matrix? What would be a convenient choice?)

(c) a=30°, cos 30°=“€_§1, sin 30°=—;-, s0
Bl
2 2
M 1 ﬁi .
2 2




1 _f3

2 2
S I

2 2

We note that a rotation of 30° y followed Ly a rotation of 60° s should L

be equivalent to a single rotation through an angle of 90°. We now check :_f?
;his:

PR | B ‘

2 2 2 2

B LNl 3

2 2 2 2

_fo = ’
|1 of°’

which does, indeed, check.

(e) a= 270°. We can obtain this by rotating through 180° , and then
rotating through 90° Recalling that the matrix on the right corresponds
to the first transformation, we can write

S N R S

so this last matrix must correspond to a rotation through 270°.

(Although we have been careful with the left-right order of our
matrices, this is unimportant in the present problem. It is evident from
the geometrical interpretation that rotation matrices commute. Can you
prove this algebraihally?)‘

(f) a= 90°. We have already obtained this matrix, namely;
0 -1].

(g) From the geometric interpretation, it is clear that the matrix

[page 2171
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'____._ cos (-) -sin (~@)
Rz(a) [sin (-) cos (—a)]

is the matrix inverse of the matrix

sin cos O

Rl(a) = [cos Q -sin a] .

Evidently Rz(a) rotates H through an angle of ~.

Using the fact that cos 6 1is an even function, whereas sin O
is an odd function, we get

cos QO sin
Rz(a)' -sina cosa|’

Consequently, if we find the matrix for -+ 1200, we can get the matrix

for —120° merely by reversing the signs of the two off-diagonal terms.

But 120° = 90° + 30°, so we have

o 1| |83 _1 1 _f
2 2| _ 2 2
L ol L BB Bl
2 2 2 2 -

This is the matrix for « = + 1200. "Oppositing'' the off—diagonal terms,

we get the matrix for o = — 1200, namely,
R ]
M= 2 i 2 .
L
2 2 -

(h) This, evidently, is the identity transformation, represented by the
matrix

[page 217]
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(1) We use 135° = 90° + 450, and then opposite the off—diagonsal terms

(cf. answer to part g):

o 4l | —1 JL oL
7G| |TR” TR
1 of |L L L) '
12 2 22 2
Oppositing the off—diagonal térms, we get:
- L 1
M= | 2 2],
-1 1
2 2
(1) 150° = 90° -+ 600; hence we have
0 -1 1 _3 BTl
2 2 2 2
M= w
1 o 3 1 1L _3
2 2 2 2

o 32213

The secon¢ : atrix factor above merely reproduces the left—hand column

of the first factor, and opposites the right—hand column of the first.factor:

[: 3“3 _2] [2 :3]

We can now write down the remaining matrices by inspection, using the

answers to Exercise 1.

(b)

NIEES i
Nl

249
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(@ [#A 1]
2 2
1 _B3)
7 "7

@ [1 B3]
2 2
Bl
|2 Z |

(e) '0—1]
-1 . 0] "

(£) [o 1]
1,0]°

® [_1 _3
2 2
B3 1
2 Z)
(h) [1 o]
0 ~11|° ™
@ [_1 1
2 3
L 10
2 2
M |_ 1
2 2
1 3]
2 2 .

3. This follows directly by carrying out the matrix multiplication.

4, Let us see, first of all, what we can learn about orthogonal matrices.

<3
249
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Let M be the matrix




2k2

We have

ax + by
cx + dy

If the lengths of the vector and its image are equal, we have

x2 + y2 = azx2 + 2abxy + b2y2 + c2x2 + 2cdxy + d2y2.

For this to hold for all x and all y, we must have

a2 + c2 =1,
b2 + d2 =1, (1)

ab = — cd.

Conditions (1) are necessary and sufficient.

Let us see what happens if we apply this same approach to the trans—

posed matrix,
t . |a ¢
o= (2 g].

A necessary and sufficient set of conditions for Mt to be orthogonal

ares

a2 + b2 =1,

2 vadlan, (2)

ac = — bd.

The $64,000 question, then, is whether conditions (1) are equivalent
to conditions (2).

A very clever way to answer this question is to make use of our know-

ledge of vectors, trigonometry, and geometry.

We can recast the conditions (l) in a new form by using the vectors

[page 217]

250



243

<
1
(oI -]
(U]
-

=
1
—
o o
[

Conditions (1) become

vl =1, _
Wl =1, TooaY
Ve W=20.

Hence V and W are orthogonal unit vectors, and they must look some—

what as follows:

(wl_ and W, are the possible locations of W, 1if V is given.)

In order to get from

we want to interchange the second component of V with the first component

[page 217}
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w
of W. fhe !1agram, however, makes it clear that these components are
equal'in%mag itude, but may perhaps differ in sign. This difference in
sign, hoéever, may not interfere in our three equhtions. )
Now%thaF we know approximately where we stand, let us begin with con—
ditions (1) Fnd deduce the equivalence of conditions (2) by a.purely
algebraic caﬁculations. (Special cases occur if some entries are zero;

consideration of these will be left to the reader.) -

But |
ab = — cd,
so we have ¥
a._4d
c b’
A§_2-d2
=TTy o
c2 b2
and hence
2
d 1
| <g> +1--E. (3)
o c
However, we have
. b2 4 a% =1,
and so
2
1+<%> -+ )
b
[page 217]

252




45

Combining (3) and (4) gives us

" whence

This is the result that we saw geometrically in our heuristic

‘discussion.
a? 4 2 .2
Since we have’ =3 = —3, and also ¢ =b", we can conclude that
c b

that a = + d.

Hence, if. V is

then W is one of the foilowing:

(We also saw this result geometrically in our heuristic argument.)

What happens, then, if we consider the pair of vectors

These must be

or else

] w 2]

[page 217]
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Hence we have seen that, if :

are orthogonal unit vectors, then so are

D |

The argument is basically symmetric, however, and we can show similar—
ly that, if ‘

1

B!

Hence the conditions are equivalent.

] we

are orthogonal unit vectors if and only if conditions (1) are satisfied,

But

and

are orthgonal unit vectors if and only if conditions (2) are satisfied.
Hence conditions (1) and conditions (2) are equivalent; that is to say,"

the matrix M is orthogonal if and only if its transpose Mt is also.

5, In this solution, we shall make use of our discussion (and notation) in

the preceding solution.

We know that M is orthogonal if and only' 1f its transpose Mt is
[page 217]
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also. Suppose that M 1is orthogonal.

We compute the product M Mt

a bl |la ¢ a2 + bz ac + bd
= 2 2
c d b d ac + bd ¢ +d

but, using conditions (1'), we get

a2 +b2 =1, ac+bd =0, c?+d =1,

and we have
MM =1,
Similarly,
MM = 1.

L .
Thus, the transpose M is the inverse!

Consequently, the result of Exercise 5 follows from the result of

Exercise 4.

3

This can be computed easily by observing that any orthogonal matrix (thanks

to conditions (1) of Exercise 4) can be written in the form

cos O —sin

sin ¢ f cos a/’
or else in the form

cos O sin O

sin. O —os a/°

(a) This might equally well be given as the definition of "translating H
o4 q g

in the direction of the vector U and through a distance equal to the

length of U."
255
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(b) First, the vector

is mapped into the vector

HE

which is not of the same length. Then the statement that ''the mapping
preserves the length of every vector " must be false.

Now, for the other half of this problem: The point (a,b) is mapped
into the point (a +2, b + 3), and the point (c,d) is mapped into the
point (c + 2, d + 3). o

The distances between the original two points,. and between the image

points, are respectively

V@@=l s ®-a)?

and

\/[(a+2)—(c»+2)]2+ [(b+3)—(d+;)]2 X

It is evident that these are equal.

(c) Every linear mapping must carry

5]

into itself. This mapping fails to do so, and consequently cannot be

linear.

This computation follows the same pattern as that in Exercise 6, except

that matrices of the form

[ cos & sin
sina —cos O
[page 218] -

oK

o



29

cannot occur.

It implies that, if the complex numbers Z1 and 22 are represented as

Z, = cos ¢ + 1 sin Q,

1

22 = cos B + 1 sin B,

(note that both Z1 and 22 lie on the unit circle in the complex plane),

then

We Z, X 2
is repres%ntable as
W=cos (¢ +B) +1i sin (@ +B).
The correspondence between
cos @ —sin B
<sin B8 cos a)
and

cos O + i sin Q

is an isomorphism.

(a) A reflection across the ling of the vector

cos QO
sin O
can be constructed by rotating H through an angle -, whereupon the

vector
cos O
sin

[page 218)]
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will come to coincide with the vector

o]

reflecting across the X axis; and then rotating the space through an

angle of + Q.

The product of the matrices to do this is

cos ¢ =-—sin | (1 0 cos @ s8in
sin Q cos | |0 -1 ~gin & cos O

[cos (0] —8in a] lcos (0] sin Q

sin O cos O sin @& =co8 O

[ cos’a —'sinza 2 cos @ sin O

=
‘ 2 cos @ 8in O sin2 o - cosza

cos 20 sin 20
sin 200 --cos 20

This, then, must be the required matrix.

We can perform an unofficial (but reassuring) check by considering two

special cases. I1f Q =0, we have a reflection across the x axis, and

the matrix becomes

which is, in fact, correct.

Suppose O = Ez- . Then we should have a reflection across the 'y axis,

and the matrix should become



25

Upon substituting « = % y €08 x=—~1, singx =0, we find that it does

80.

(b) This follows immediately if we substitute w = /2 into Equation (8).

259




Appendixi

RESEARCH EXERCISES

The material in this Appendix is probably too difficul% for all but a few
extraordinarily talented students. As may be seen from the exercises, all of
which are worked out, the bulk of =zre manipulation is great. Hence only those
students who possess both creative imaginatiun apd considerable capacity for
pencil pushing are likely to profit from these exercises. Another difficulty
with all of this material is that there is no peg on which to hang it — that
is to say, the student probably has no background ia the arts or sciences to
which this mathematics could be applied.

The usual reaction of the mathematical novice to the "hat trick"
technique of solution, which is repeatedly used here, is ome of puzzled

'bewilderment. This phrase refers, of course, to the prestidigitator who

pulls a rabbit from an apparently empty hat to the astonishment of a naive .
audience. Now professional mathematicians do not think it bad practicé to use
the hat trick; in fact, both they and their audiences enjoy this when it is
properly pegfofmed. It is simply good pedagogy, however, to inform your
‘audience that you are going to do a hat trick. Moreover, the good teacher will
have no difficulty in properly preparing his students and arranging for ; climax
in appreciation and interest at the appropriate time in the discussion. You
will perhaps recall Colley Cibbef's advice to young actors — first tell your

. audience what you are going to do, then tell them what you are doing while you
are doing it, and finally tell them when you‘have done 1it.

Research in any field is best presented as a journey into the unknown. As
“Buch, it is fraught with danger, difficulty, and all sorts of pleasant and
‘unpleasant surprises; But also it is quite comparable to the activity undertaken
by the creative writer, the artist, and the composer. It may be well to point
out this relationship, which is not always obvious to young people.

Let us look at Section 1, dealing with quaternions. it may already have
" occurred to the imaginative student that there is no real reason for reqﬁiring
~ the entries of a matrix to be real numbers. For quaternions, the entries are
allowed to be complex numbers. If the studehts do not notice that restricting
these entries to be real numbers will reduce the quaternion to a complex
number (Text, pg.94), then this ought to be pointed out to them. It might be
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well at this time to point out that matrices with complex entries are matrices
with entries that are themselves matrices, and that if one liked to do this,
one could also consider matrices of matrices of matrices, and so on ad
infinitum — or ad nauseam.

Juat why one should single out matrices of this peculiar quaternion form
as an object of intensive study, however, is by no means immediately apparent.
If you like, their invention was a stroke of genius on the part of the mathe—
matician W. R. Hamilton. And so indeed was Mozart's Eine kleine Nachtmusik
and Shelley's Ode to a Skylark.

The material in this section involves straightforward, but lengthy, com—

putation. On pp. 222, 223 of the Text is a mere hint, but the best that could
be offered of the way in which the algebra of quaternions is associated¢ with
geometry.

The introduction to Section 2 is cursory. It may be mentioned that 'Lie"
is pronounced ''Lee,'" though perhaps the students may recognize this fact since
Lie was the name of the first secretary of the United Nations.

In Section 3, some aspects of the general theory of subsets of 2 X 2
matrices are developed. Some particular subsets were studied in Chapter 2.
Perhaps the present material will encourage students to investigate further
the basic mathematics of sets and their subsets.

The last section is much closer tc present—day mathematics than the three
preceding sections. It has more, perhaps, in the way of elegance and actuality.
The introductory paragraph is essentially a factual description of what mathe—
maticians do. 'It should be stated that the good mathematician delights in
constructing an ingenious or original technique for proving a theorem, whether
it i8 a new or a long established result., Every interesting theorem has in its
proof one or more elements of noveltv. In fact, it has been remarked that the
only interesting things in mathematics are new proofb of old theorems and old
proofs of new theorems. Like all aphorisms, this one should be taken cum grano
salis. But mathematics is very close to music in this respect, at least to
classical music. One listens for the familiar and enjoys it when one hears it.
Dissonances are invented for the purpose of resolving them. Problems may be
invented simply for the pleasure of solving them.

Anyway, mathematicians have more fun than anybody.

1. Quarternions

@ a= |33

y z2mXx +1iy, www+tiv;

[pageﬂ 219. 220]
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8(q) = zz + wiom (% +dy)(x ~ iy) + (u — iv)(u + iv)

= x'2 - izyz + u2 - izvz

-x2+y2+u2+v2.

’ Since X, y, u, and v are real numbers, xz, yz, uz, _and v2 are non—
negative real numbers. Thus, 1if 5(q) = 0 then the sum of the nonnegative

- 2.2 2 18 0, and so each of these numbers must be zero.

numbers xz, y ',"u , and v
- Thus, x, y, u, and v must each be zero, so z, w, E, and w are all zero.

. Therefore, q = 0. Conversely, if q = 0, then 2z, w, z, and w all are zero,
j’.h('abnd this :lmpi:les that x, y, i, and v are all zero. Thus; xz, yg, uz,\ and )

v2 are all zero, so 5&(q) = 0.

(b) If q #0 then &(q) ¥ 0 by (a). Now q has an inverse if and only

1f 5(q) ¥ 0. Thus, q has an inverse. Conversély, if q has an inverse, then

8(q) ¥ 0, and so by (a), q # 0. The form of q'"1 is

'—1_'zw-1_ _z'—w_ 1 Z —-w
q % Z 5(q) |¥ = 2z 4w |9 z]°

0 1 o] , 1 o4
1] +.y[o —1] +“[— o] +"[1 0
iy 0 ] 0 u 0 v
o -y| * [—-u o] * [iv o]

- |x+iy+0+0 O0+0+u+iv| X+1iy u-+iv
O+0~u+iv x-1iy +0+0 ~u+iv x -1y

o

(d) U =

LA

(pages 220, 221)
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=[98 8] --a 2 ] - [0l -w
we (228 - [5 2] -

S F | ) IS I I P
we [P - [ ] 2

i o
we=-1 |1 °r°i'-—1 o 1 =[° o
0o -ij |1 o 2 =l 0 :
w

(e) Let q = [_; _] s z=x + iy, w=u + iv;

ra= [_g _] sy m=a+ib, n=c + id.

From (c), we have

- X + iy u + iv
q = XL + yU + uV + vW [—(u -iv) x - iy] s

a +ib c + id

g = al + bl + cV + dW = [—(c ~id) a-ib

Therefore,
q+r=xXI+al+yU+bU+uv+cV + vW + dw
= (x+a)l + (y +b)U + (u+c)V+ (v+dWwW
- (x +a) +1i(y + b) (u +c) +i(v + d)
—[a+c)y—1(v+d)] (x+a)-i(y+b)]"
Letting
8w (x+a)+i(y +b) = 2 +m,
tw (u+c)+i(v+d) =w+n,
we have

s t
q+r [;E 3] ’

[page 221)
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which is in the form of a quaternion, since s € C and ¢t € C.
Similarly,

= (x — a) + i(y — b) (u=c) +i(v—-4d)
q-—rx { [(u—c)—i(v—d)] (x—a)—i(y-.b)]

Letting s' = (x —a) +i(y —b) = z - m and t'a (u—-¢) +i(v—=4d) mw=—n,
s'* ¢eC, t' € C, we have

[s' t']
q-Tr= | g 3!

which is in the form of a quarternion.

Using the same notation, we have

qr = (x3 -+ yU + uV + vW)(al + bU + cV + dW) |
= xaIz + xbIU + xcIV + xdI¥W
+ yaUI + ybil2 + ycUv + yduw
+ uaVI + ubVU + ucV2 + udVW
+ vaWI + VbWU + VeV + vdw’

i

xal + xbU + xcV + xdW + yaU + ybu2 + ycUV + ydUwW

4+ uaV + ubVWU + ucv2 4+ udVW + vaW + vbWU + vcWV + vciw2

xal + xbU + xcV + xdW + yaU + yb(~=I) + ycW + yd(—V)

+ uaV + ub(~W) + uc(~I) + udU + vaW + vbV + vc(-U) + vd(-I)

(xa — yb — uc — vd)I + (xb + ya + ud — vc)U

+ (xc — yd + ua + vb)V + (xd + yc — ub + va)¥W

53

where

A= (xa—yb—uc —vd) + i(xb + ya + ud - vc),

B = (x¢c —yd +ua + vb) + i(xd + yc — ub + va),
P--—[(xc—yd+ua+vb)-i(xd+yc-ub +va)],
D= (xa —yb — uc = vd) — i(xb +ya +ud —vc) .

[page 221]
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Since

A=zm—wn, - Bmzn+wm AEC, BEC,

P=—B, D = A,

we have

>l

A
qr = [_3‘ ] ’
which is in the form of a quarternion.
& -1 7 <_17_>2 Te Ll g
2 1/2 :
lq! [5(a)] 5(a)

Since

din
nl €

- 24,

by definition
8(q) = zz + ww,

and therefore

1 -1 ['z‘ —'wJ
8(q) 27+ LV 2]’

rl

which by definition is q .
Now,
q—ln 1 ['E -w]_ 1 [x—iy
Z7 + Ww w z x2+y +u +v2 u~-1iv
A BJ| -
where
A== = i < 2
X +y  +u +v X 4+y +u” +v

-u — iv]|
x + iy
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u ' v
B = - +i 3 >
<x2+y2+uz+v2 X +y2+uz+v2

Letting

- and

ol >
x2+y2+uz,+v2 xz-i-y2+uz+v2

we have 8 € C, t € C, 8o

is in the form of a quarternion. Since A =3 and B = — t, we get

~1 A B
qQ = [_3' I] N
.which is perhaps a clearer way of expressing q—l in quarternion form.

2
(® a° - t@)q + iql® 1= [—; ;] - (2%) [_; ;] + ([a(q)]”z)z [(1, 2]

- Wi zw + Wz —2xz  ~-2xw 2 . 2. 2 1 0
- [—'ﬁz-—iﬂ —«’vw+'§2]+[‘2xﬁ -sz] Ay VY [o 1]

2
- [A B] + [—Zx - 2xiy —-2xu—-2xiv]

P D 2xu ~ 2xiv = —2x* + 2xiy
+ xz-f-y2+uz+v2 0
2 2 2 2
0 X" +y +w +v

[pages 221, 222]
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where

A= x2 + 2xiy - y2 - u2 + uiv = ivu — v2

¥u + xiv + iyu ~ yv + ux — uiy + ivx + vy

[o-]
n

P=—ux —uly + ivx + vy — xu + xiv + iyu — vy

2 2
D=—u" —uiv + ivu - v2 + x = 2xiy - yz.

Hence we obtain

2 2 A' B!
q —t(q)q +IqI'I= [P. D.]

where

A'= x2 + 2xiy — y2 - u2 - v2 - 2x2 ~ 2xiy + x2 + y2 + u2 + v2 =0

B'= 2xu + 2xiv — 2xu — 2xiv +0 =0
P'= — 2xu + 2xiv + 2xu — 2xiv + 0 = 0
. bl: - u2 - v2 + x2 - 2xiy - y2 - 2x2 + 2xiy +.x2 + y2 + u2 + v2 = 0
and therefore '

2 2 0 0
q — t(q)q + Iql I = [O O] = 0,

(h) qq = (al + bU + cV + dW)(al — bU — cV — dW)

2
= azI — abIU ~ acIV — adIW + baUl — b2U2 — bcUV — bdUW

+ caVI — ¢bVU — c2v2 — c¢dVW + daWl — dbWU — dcWV — dzwz.
Using (d), then, we get

- ' 2
qq = azI — abU — acV — adW + baU — b"(—I) — bcW — bd(-V)

»

+ caV — cb(—W) — c2(—1) — ¢cdU + daW — dbV — dc(-U) —dz(-I)

= 22T + b2T + 21 4 d°T = (a® +b% + c> + dD)1
= 8(q)X
= C[S(q)} 1/2)2 1 o iq1? 1.

[page 222]
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(1) Let q = xI 4+ yU +uV + v and r = al + bU + cV + dW. Since
.. 9 €Q and re Q it follows by (e) that qr € Q. Referring back to part (e),
i}".y‘ze see that

gr = (xa — yb —uc — vd)I + (xb + ya + ud =~ ve)U

4+ (xc = yd + ua + vb)V + (xd + yc — ub + va)W.
- Using (a), we obtain
8(q) = x2 +y2 +u2 + v2 and 0O(r) = a2 + b2'+ c2 + d2.

Also,

8(qr) = (xa — yb — uc — vd)2 + (xb + ya +ud — ve)2

+ (xc — yd + ua + vb)"Z + (xd + yc — ub + va)z.
Thus,

Iql = [B(q)] 1/2 = [x2 + y2 + u2 + v2] 1/2 and

irl = [B(r)] 1z [a2 +b2 + c2 +d2] 1/2.

Therefore,
2 ‘ 2 2
gt ixl = [&F 4 y? ey’ #v0 ] M2 (a2 P e c? aa ] 112
2 2 2
s [(x2 +y2 +u2 +v2)(a2 +b2 +c +d )] 1_/
= lxz(a2 + b2 + c2 + d2) + yz(a2 + b2 + c2 + d2)
+ u2(a2 +.--b2 + ¢ + d2) + v2(a2 + b2 + 2 + d2)] 1/2.
Now,

iqrl = [B(qr)] /2 [(xa - yb — uc — vd)2 + (xb + ya + t\;ld — Qc)z

2
© do(xec = yd +ua + vb)2 4+ (xd + yc — ub + va) ] 1/2

= [xza2 — 2xXyab — 2xuac ~ 2xvad + yzb2 + 2yubc + 2yvbd + u2c2

+ 2uved k- v2d2 + x2b2 + 2xyab + 2xubd — 2xvbec + y2a2

[pages 222, 223)
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+ 2yuad — 2yvac + uzcl2 = 2uved + vzc2 + xzczl— 2xycd

+ 2xuac + 2xvbc + yzd2 — 2yuad - 2yvbd + uza2 + 2uvab + vzb2

+ xzd2 + 2xycd =~ 2xubd + 2xvad + yzc2 — 2yubc + 2yvac + uzb2

— 2uvab +v a ] 1/2

= [xza2 + :‘czb2 + xzc2 + xzd2 + yzb2 + yza2 + yzd2 + y2c2 + uzcz

+ uzd2 + uza2 + uzb2 + 2d2 + vzc2 + vzb2 + vzaZ] 1/2

[X(a + b +c2+d2)+y2.(az+b2;|-c2+d2)

2

+ uz(a2 + b2 +c + dz) + v2(=12 + b2 + c2 + dz)] 1/2

= |ql Ir]|.
Since q € Q and r ¢ Q it follows from (e) that q + r € Q. Now

qQ+tr=(x+2a)l+(y+b)U+ (u+c)V+ (v + dHw, o=

B@+1) = (x+a) + (y+b)2 4+ (ut o) (vt dy2

The inequality

, Iq + rl < Iql + Ir|

LZXY

is equivalent to

[+ ? 4 rm?+ @+l + (v a?] M2

< [x2 +y2 +u2 +v2] l/2‘4- [82 +b2 +c2 +d2] 1/2,

or to
x2+2ax+az+y2+2by+b2+u2+2cu+c2+v2+2dv+d2
<x2+y2+u2+v2+2[x2+y +u2+v2]1/2[ +b2+c +dZJ]'/2
+az+b2+c2 +'d2,
or to

ax + by + cu + dv < [xz+y2 +u2 +v2] 1/2 [az +b2+c2 +d2] 1/2.
[pages 222, 223)
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This is valid if the left—hand member is negative. Otherwise, it is equivalent

to
azx2 + b2y2 + c2u2 + d2v2 + 2abxy + 2acxu + 2adxv + 2bcyu + 2bdyv + 2cduv
2 . .
< azx2 + b2y2 + c2u2 + d2v2 + azy + azu2 + a"'v2 + bzxz + b2u2
+ b2v2 + c2x2 + c2y2 + c2v2 + d2x2 + d2y2 + d2u2,

or to
: 2 2 2 2 2
0 < (ay — bx)" + (au — cx)” + (av — dx)” + (bu — cy)"~ + (bv —dy)

+ (cv - du)z,
which is valid since the right-hand side is a sum of squares of real numbers.
You should compare this result with the ''triangle inequelity" (2) on

page 163 of the text, and should note that the present proof merely generalizes
the proof on pages 163 and 164 of the text.

2. Nonassociative Algebras

(a) (1) Ao B = AB — BA,
~B 0 A=~ (BA— AB) = —BA + AB = AB — BA = A o B.

(11) Ao A= AA- A =0.
(iii) Ao (BoC)+Bo (CoA) +Co (Ao B)

= Ao (BC—CB) +B o (CA— AC) + C o (AB — BA)

A(BC — CB) — (BC — CB)A + B(CA — AC) — (CA — AC)B

+ C(AB — BA) — (AB — BA)C

ABC -~ ACB — BCA + CBA + BCA — BAC — CAB + ACB + CAB
— CBA — ABC + BAC

0.

(iv) Ao I=AI—-TA=A-A=0,

IoA=TA-Al=A—-A=0.

(b) Let

S A PR

[pages 222, 223)
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Then

Ao (Bo(C) =

N =

R

Bale(Bale g - AbeD) .
SR R (R O DR R R
B -Edbd-(xd-39
|

-12 12
-12 12}°
and
womoo-([3 2] o [3 3o [2 ]
(11 2|y oof _froopfr 21y |01
- 3 0 31 31 3 0 1 2
(R BN Y A I
30 6 6 1 2 -3 -6 12
_6001_01'1[60 06__[—3—6:
T ol-3 -6ll1 2 1 2l{-3 -6 -6 -15 0 —12f.
S [3 12
2 ]
- ~-12 12 3 12
Hence, Ao (BoC)# (Ao ?) oC s;nce [_12 12] ¥ [—6 _ 3] .
(¢) Ao (B+C) =A(B+C) — (B +C)A
n AB + AC —~ BA — CA
= AB — BA + AC — CA
= (Ao B) + (A ocC).
(A+B)oC=(A+3B)C~C(A +B)
@ AC + BC ~ CA — CB
[page 223)
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= AC -~ CA + BC - CB

= (AoC) +(BocC).

(d) Let x be a number. Then

x2(A oB) = xz(AB — BA) = szB - szA

= XAxXB ~ xBxA

= XA o XB.

H

(e) Suppose there were an o unit. Call it I'. Then, for amy

would have

Ao I'=A=1"'o0A,

by definition of unit. If A = 0, then

I'o0=10-01'=0-0=0,

and

Qo1 =0r'-1'0=0-0=0.

Certainly I' # 0. Suppose
We know that

by definition. Therefore,

80

and

A#0.

Ao 1" =1I'"o0A,

AI' — I'A = I'A — AI',

2A1' = 21'A

272
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2(A1' ~ 1'A) = 0,
| which implies that
Al' — 1'A =0,
and thus that
AoI'=0.
But
Ao I' =4,

Together these imply that A = 0, which by hypothesis is untrue. Therefore,

there 18 n6 o unit.

U (£) AfB = (AB +BA)

2 .

.(1) AJA = AA + AA E%A = AZ.

(i1) AjI =

AL +IA _ A+ A
2

so I dis a j unit.

1

: + B
(141) "AJ(B + C) = A(B+C);(B+QA=AB AC + B4 + cA

. 4B +BA _AC+cCA
2 2

AiB + AjC,

(A +B)C +C(A+B) _ AC +BC + CA + CB
2 7)

(iv) (A + B)jC

AC+CA+BC+CB
2 2

= AjC + BjC.

(v) For any number x,

[page 224)
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g =« (REE4)

=xZAB +xZBA=xAxB+xBxA
2 2

= x& j XB.

(vi) Aj(BC) — (AB)jC + Bj(CA) — (BC)jA + Ci(AB) — (CA)jB

_=-%-[ABC+BCA—ABC—CAB+BCA+CAB—BCA—ABC+CAB

+ABC—'CAB—BCA]

n
Nl =

r——
(=}
[ )
I
1©

3. The Algebra of Subsets

(a) (1) (0} + {0} » {0}, so {0) 1is an additive subset.
) (1) + (D = [3 °] + [3 ‘{] - [3 2] d m, s (@

is not an additive subset.

(iii) M + MC M, since the sum of any two 2 X 2 matrices is.

always, a 2 X 2 matrix, so M is an additive subset.

(iv) z +2C 2, since the sum of any two complex numbers is a
complex number and Z is the set of 2 X 2 matrices which is
isomorphic with the set of complex nmumbers, 80 Z is an
additive subset.

@ oo

To see this, consider
2 1
and
B=[1 ;],S(B)=2—1=1.

'fhus AGML, BeMl. Now 274
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A+B€M1+M1;
and
- 2 1 1 1 3 2
A+B=[1 1 + 1 2] =[2 3],

5(A + B) = (3)(3) — (2)(2) =9 -4=5¢1,

Accordingly, by counterexample, Ml i3 not an additive subset,

(vi) Let P be the set of all elements of M with nonnegative

entries. Then

P+ EC P since the sum of nonnegative numbers is a nonnegative
number. Thus P is an additive subset,
(b) (i) A+B={A+B | AcA and BeBl=(B+AIB€B and
A€ A) =B + A, since ordinary matrix addition is commutative.
(1) A+(B+C) =(A+(B+C):A€cA BeB, and Ce€ ()

={(A+B) +C:A€A BeB, and C € ),

since ordinary matrix addition is associative.

(ii1) A+C={A+C:A€A and Ce€ )

C{(B+C:BeB and Cec) since ACB

=B +C.

(c) (é+§_)+(:g+§)=[(A+B)+(A+B):A+Beé+B and

A+BeA-+B)

(A+(B+A)+B: AcA, BeBj

—

(A+(A+B)+B:AcaA, Be B)

((A+4) +(B+B) : Ac A, BeB)
CA+B:AcA Be3)=a+s,

since A and B arr both additive subsets.

(d) Let
275
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where v is fixed.

80 g

Let Av = 0,

(e) (1)

(i1)

(iii)

(iv)

(V)

(vi)

(£) (i)

(i1)

269

y_mv={A:A€M and Av = [8]},
Then
U+U=(A+B: AcU and B € U)

Then

(03{0} =
(1)(1} =

M-MC N,

}
[o

0

{A+B:A€M,B€M,Av= [g],Bv= [g}
{A+B: (A+B) €M, (A+B)v = Av + Bv

cy,

1}

is an additive subset of M.
(—A)v = (-1)Av = (-1)0 = 0.

(0), is

(13,

s0 a multiplicative subset.

{0}
(1)

since the product of any two

so is a multiplicative subset, °

2 X 2 matrices

is always a 2 X 2 matrix; so M is a multiplicative subset,

z2(C z, since the product of any two complex numbers is a
complex number and Z is the set of 2 X 2 matrices that is
isomorphic with the set of complex numbers; so 2 is a
multiplicative subset.

MM C M. Let AeM, Be M) so B(A) = 8(B) = 1. Then

5(AB) = 5(A)8(B) =1 e 1

subset.

22 C B,

are nonnegative numbers; so

1, so M, is a ﬁulfiblicative

‘

since the product and the sum of nonnegative numbers

P is a multiplicative subset.

é@g)=[A(Bc) Ae€eA BeB, and C e C}
= ((AB)C : A€ A, BEB, and C € C)
= (AB)C,
since ordinary matrix multiplication is associative.
AC= (AC: A€A and C e C)
C[BC:B(—:E and C € ¢} (since ACE)
= BC. 276
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(8) Let A= {A it Aw [g 3] , where a € R and a 4% O} .
Let B = {B : B = [: %] , where b ¢ R}.

Then AB = {AB : A

€A BeB); BA=(BAIBeB, AcA);
r

0 aj||b 1 a al |, .. |0 ba
AB"[Lootl 1] lo oJ'BA‘[o a]'
a

0

» and this means a =0 and a = ba.

But a # 0 by hypothesis, so AB # BA.
Therefore AB # BA. -

(h) (i) Let A= {0, I}. Then
Aa = {00, 01, 10, 11} = {0, 0, 0, I} = {0, I} = A,

s0 A is a multiplicative subset,

(ii) Let B = (I, -I}. Then

_B_§‘= {11, 1¢-1), (-D)1, -n-n}= (1, -1, -1, 1} = (I, -1} = B,

so B is a multiplicative subset,
(iii) Let N be the set of all elements of M with negative entries.

Then gg(t_g, since the product of two negative numbers is a

positive number; so N is not a multiplicative subset.

(iv) Let E be the set of all elements of M for which the upper
left-hand entry is less than 1,
Let

-2 0 ~1 0
C= [ ] and.let D = [ é 1] ’

so that C € E, D ¢ E. Then
-2 0{i|=-1 0 2 0
¢ = [ 1 2][0 1} - [—1 2]¢5’
gince 2 4 1.

Therefore E is not a multiplicative subset.
[pages 226, 227]
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However, consider the subgset F of E for which the upper left—hand entry

'is between O and 1, inclusive, and the lower left—hard entry is 0, Then

_F_=[F§F= [8 :], where a, b, c € R and O_<_é_<_l}. Consider

. |a b |l x y
A= [0 c] and B = [O z]’

where A € F, B e F. Then

= a bl|x vy
AB [0 c] [O z

ax ay+bz| _ |d e
0 cz T {0 £

where
d, e, fe R and 0<d=ax<1,

so that AB € F. Thus, F is a multiplicative subset.
(v) Let
G = {G :GeM and G = [: {] » where 0<x, 0<y and x+y< 1} .
Consider

o | x Yy - | v oz
H [O l] and J {O l] ’

where He€e G, JeG. Thus, 0<%, 0Ly, x+y<1l, 0<w, 0<2z, and
w+z<1l, Now,

U3 lxw Xz + y]

0 1]

U
—
[«
[l ]
[ PERES— }
—_—
oz
- N
pess——————-—

Since 0 <x and 0 <w, we have 0 < xw.
Also, 0<%, 0<z implies 0 <xz and 0 <y implies 0 <xz +y.
Then =xw + xz +y =x(w +2) +y <x(1) +y =x +y <1. Therefore,

a b
Ry = [o 1\’

where 0 <a, 0<b, and a+b<1l, so HICG. Thus G is a multiplicative

subset. [pages 226, 227
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Additional Results:

Let tA=(tA ) teR and t is fixed, A€ A€ M}. Then tA is
" obviously an additive subset if A is additive

tB + tC=¢t(B+C)=1tDe tA for B, C, and De

1>

(B and C are taken in A; and, since A is additive, B + C D e A).
2

Since ¢tBtC = t"BC # tBC unless e = t, tA is not multiplicative unless

i

t:2 =t and A is multiplicative,

Define (~1)A = {(~1)A : A € Al.
.Define —A = {-A : A € A}. [-—A is a well—defined mat:rix.]
Then (-~1)A = — A, since =A = (~1)A.

Define én = {A" : Ae fs_]- In general, An is neither additive nor multiplicative,

A(B+C) = {A(B+C) : Aec A, Be3B, Ce()
= (AB+AC: AcA,BeB, Ce C)
= AB + AC, since matrix multiplication distributes.
Consider A(B U C). U= set union, = set intersection.

MeBUC ~—> Mc¢B or MeC (or Me (BNQ)).
MeA(BUC) €<—> Me AB or M € AC (or Me A(B NC))
<—> Me AB |J AC.

Therefore, A(BUC) = AB U AC.

Me ABf1C) <> Me AB and Me AC

<—> Me AB MNAC.

Therefore, A(B{)C) = AB MAC.

)

4. Analysis and Synthesis of Proofs

n

(a) (1) xAy
y A x

are the same.

[

the smaller of x . and ‘y * Clearly, these two
the smaller of y and x

[pages 226~228)

279 e



273
(11) xV y = the larger of x and y} Clearly, these two are

y V x = the larger of y and x the same,

(1i1) x A (y Az)

the smaller of x and the smaller of y and gz,

(xA y) A z = the smaller of the smaller of x and y and =z;
clearly, each of these is the smallest of the three numbers x, y,

and z; so the two expressions are the same.
[

(iv) xV(yVz)=(xVy)Vz. Each of these expressions calls for the

largest of the three numbers x, y, and 2z, 80 they are the same,
(v) x A x=x. The smaller of x and x is certainly x.
(vi} xV x = x. Similarly, the larger of x and x must be x, )

(vit) x A (y V z) = the smaller of x and the larger of y and 2z,

(x Ay)V (x Az) = the larger of -the smaller of x and y and

the smaller of x and z.

If further proof is desired:

Case I |x<y<z| xA@V2a)=xAz=x | EAy)V (xAz)=xVx=x
" II [ x<z<y " =x Ay =x " =xVx=x
"OIIT |y <x<z 1" =xAz=x " =yVx=x
" W |y<z<x " =xANz=z " =yVz=2z
" V]iz<x<y " =x ANy =x " axVzs=x
" VI |z2<y <x " =xAy=y " =yVz=y
(viii) x V (y A z) = the larger of x and the smaller of y and z,
i (xVy)A (xVz)=the smaller of the larger of x and y and
the larger of x and z.
Also ‘
Case I |x<y<z| xVuAz2)=xVy=y | GVDAEVzyEyAz=y
" IT1 |x<z<y " =xVz=2z ' " =yANz-=2z
"I |y <x<z " =x Vy = x " =xNz=x
L IV ly<z<x " =xVy=x " =x Ax = x
L Viz<x<y " =xVz=x R =y Ax=x
" VI {z2<y<x " =xVz=x " =xAx =x
[page 229)
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a b
c d

(b) A(BC) =
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(¢) A+B=

AV S

Define

(d) A few '‘rules' are as follows

(from matrix rules):

the analogue of part (b).

(1) AV@EVCe =(@AaVBe Ve,

a b
d

E

AV (BVo) =
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(i1)
(iii)
(iv)
(v)
(vi)

(vit)

~

AV B) = BV A). T
AN BV C) = (AAB)V (A AC).
AV 0

AANO=0=0AA only if each entry of A is > 0.

A only if each entry, a, of A is > 0.

AN 1

L}

A=IANa only if each entry of A is between 0

1 inclusive.

AV (-a) # 0.

The following ''rules' are also true, though they are not paralleled in

matrix ‘algebra.

(1)
(ii)
(iii)
(1iv)

v)

AAB=BAA.
ANA =A.
AV A = A,

AV@BAC =@VB)A@LYVO).

AVI=1 only if for A= t: 3], a<l, b

1
IA A

283

[page 229])

and



